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A Study of the Free Energy of the Lenz-Ising Model 
Using the Cluster Variation Method of Morita 

CHAPTER  I 

CLUSTER VARIATION METHOD 

Qb.iectives of This Work 

The purpose of this work can be described by 

considering these answers to the following questions. 

(1) What are we studying?  The free energy  f the Lenz-Ising 

model will be examined.  (2> why are we stL.-/ing this model? 

We are interested in obtaining a method that will permit the 

calculation of the free energy for systems of interacting 

particles.  The Lenz-Ising model is the simplest of all the' 

models of interacting particles.  No exact solutions in 

three dimensions for arbitrary T,B yet exist.  (3) How shall 

we study this model?  The Morita Cluster Variation Method 

(CVM) will be used to calculate an approximate value for the 

free energy of this model.  (<) Why do we use this method? 

Variational methods have a track record as a superior 

approximation method.  The Morita Variational Method has 

been found to behave strangely; we wish to resolve this 

strangeness. 

In addition to obtaining answers to the above 

questions, this work will assist in gaining insight into the 

phase transitions exhibited by various systems at a critical 

temperature peculiar to each system.  Examples of phase 

Manuscript approved July 28, 1987. 



changes are the transition from a non-ferromagnetic to a 

ferromagnetic state in Fe and Ni i.e. the long range 

ordering that causes the material to become magnetic.  Other 

examples are a lattice gas and a binary alloy such as Cu-Zn. 

Application of the CVM to Calculate 
the Free Energy of the Lenz-Ising Model 

One way to study the behavior of an N-particle 

system is to analyze this behavior into the behavior of the 

N l-particle subsystems, the N*(N-l)/2 2-particle 

subsystems, the N*(N-1)*(N-2)/(3!) S-particle subsystems, 

and so on.  This method replaces the study of one object 

--the N-particle system--by the study of 2^-1 objects.  Why 

would one do this? 

One always does this for systems whose particles 

(1) do not interact with each other whence, the system's 

behaviors are entirely determined by the N l-particle 

properties and (2) are all similar in their properties, 

whence, all N l-particle properties are the same.  Then this 

approach replaces the study of an N-particle system by a 

l-particle system.  Examples of this approach include the 

standard studies of the ideal classical and quantal gases, 

and the ideal paramagnet. 

This approach has been extended to include those 

systems of interacting particles for which "normal 

coordinates" have been located, coordinates in which there 

are no interactions.  The main example here is the set of 

s 



vibrations of lattice ions in the harmonic approximation, 

which are replaced by non-interacting "quasiparticles".  In 

this case, however, the 1-quasiparticle properties are not 

all the same; each class must be treated individually, and 

the final results obtained by summation. 

However, arguments that "only small subsystems are 

important" are rarely rigorous for non-ideal systems.  Nor 

do all of these sorts of arguments include estimates of the 

errors made in ignoring the remaining (enormously many) 

subsystems.  Further, it is often difficult to see how to 

improve a treatment of this type, which might be promising, 

but not quite good enough.  These difficulties all come from 

the same sources: 

1. the choice of which subsystems are included in the 

study is usually made on an intuitive basis, and not on the 

basis of a general principle, and 

2. ignored subsystems are not explicitly considered at 

all, so that it is difficult to judge the error that 

ignoring them incurs, or how to include them in a better 

approximation. 

The usual criterion for including subsystems is that 

their particles are all physically close, and in intense 

interactions; subsytems whose particles are all distant, and 

not interacting, are usually ignored.  This is why the 

systems studied are often called "clusters"; i.e. a number 

of similar things in close proximity, somewhat separate from 



other ■things.  There does not seem to be a common name for 

particles that are not parts of clusters.  That is, common 

language reflects the procedure sketched above: we know how 

to treat N-particle systems that obviously separata into 

essentially independent subsystems (clusters), but we have 

difficulty when this separation is not perfect. 

T. Morita[l] has presented a formalism for the 

equilibrium statistical mechanical study of N-particle 

systems in which all 2^ subsytems explicitly appear. 

One then makes an explicit choice as to which will be 

retained and which will be ignored in further study.  This 

leads to an approximate expression for the free energy of 

the N-particle system in terms of quantities related to the 

retained subsytems[2-4].  Minimizing this approximate free 

energy by varying these quantities: . 

1. gives an estimate of the exact equilibrium free 

energy , and 

2. gives estimates for all equilibrium thermal 

behaviors of the system. 

It had been thought that it gave an upper bound to 

the free energy -- we now know that this is wrong! 

There is only one sort of approximation involved in 

this procedure: the choice of which subsystems to retain for 

further consideration, and which to ignore.  Many other 

strategies require a series of nested approximations;  it is 

frequently difficult to determine their relative affects on 



the accuracy of the result. We now know that Morita's 

method is also of this uncontrolled type! 

Morita's method can be systematically improved by 

retaining previously ignored subsystems.  Since these 

explicitly enter the original expression for the free 

energy, it is possible to form some estimate of their 

importance.  It is easy to incorporate any "physical 

intuitions" one may have as to the importance of certain 

clusters. 

Morita has called his procedure the CLDSTEE VARIATION 

METHOD.  We shall present it by defining a "cluster" in a 

general way, one that does not rely on some particular 

attribute such as physical proximity.  We shall restrict 

ourselves to classical systems, and we shall suppose that 

the particles are arranged on a crystal lattice.  Then we 

shall define the mlcrostates and the macrostates of 

clusters, and then distinguish between cluster functions 

and cluster quantities.  We shall introduce the 

distinction between extrinsic and intrinsic variables, 

recall the usual development of the Hamiltonian into a 

series of intrinsic terms, and exhibit Morita's novel 

development of the entropy into such a series.  We exhibit 

the free energy of the system as a sum of a series of 

intrinsic terms, each due to a particular cluster.  This 

series is exact, but, as it contains 2N -1 terms, it is 

too difficult for direct calculation of results for 



macroscopic systems.  But this series is ideal as a starting 

point for approximations -- one partitions the set of 

clusters into those which one will retain in subsequent 

work, and those which one will ignore, and then deletes from 

the sum all the terms relating to ignored clusters.  In this 

work the truncated expansions of the free energy are also 

called approximations.  Thus the expansion retaining only 

the first term is called the first approximation and the 

expansion retaining only the first and second terms is 

called the second approximation and so on.  In this work the 

free energy will be calculated for the first through the 

fourth approximation using the Morita expansion. 

The calculation of the free energy using these 

concepts can be outlined as follows.  The Helmholtz free 

energy of the Lenz-Ising model[5] is expressed as a function 

of its macrostate, F = F(Po), for the first through the 

fourth approximation using the Morita expansion.  For each 

approximation, that macrostate Po for which the free energy 

is stationary is found, using either the calculus methods or 

the Simplex algorithm[6].  The stationary free energy is 

obtained with the calculus methods by setting the first 

derivative of F to zero: (6F/*5'Po )P0 = 0 and determing the 

mini-max nature of the stationary state Po with the second 

derivative.  For the higher approximations the Simplex 

algorithm is used to find the stationary free energy. 

The method can be summarized as: Write the free 



energy (using the Hamiltonian) for the Lenz-Ising model 

using the Merita cluster expansion and minimize it. 

Remembering that the equilibrium free energy is the one 

which is the least of all possible free energies (F), the 

minimization will give two results: (1) the equilibrium 

macrostate Po, and (2) the equilibrium free energyy Fo - 

F(Po).  This method is completely analogous to the quantum 

mechanics procedure:  minimizing the expectation of the 

energy <E> = (psi,Hpsi) gives not only the correct ground 

state energy of the system Eo but also the correct ground 

state psio. 

The results for the Lenz-Ising model in the presence 

of a magnetic field will be calculated with the Morita method 

and compared with exact calculations for systems which contain 

only N=l,2,3,4 particles (see Chapter III). 

Boltzmann. Gibbs. Morita 

Boltzmann expressed the entropy of composite systems 

whose sub-systems do not interact as[7], 

SB = -kBZi = iNtri( n Pi( 1) lnPi( 1) 

where ka is Boltzmann's constant 

tri ( 1) is a (generalized) summation over all the 

microstates of the ith sub-system, 

Pi ( 1)  is-the probability law for the microstates of 

the ith sub-system, that is. Pi ( i) is the 

MACROSTATE of the ith SUB-SYSTEM. 

Later this was extended by Gibbs[8] to calculate the 



entropy for composite systems with arbitrarily interacting 

subsystems as, 

SG = kBtr< N) P( N) inP( N) 
where, 

tr<N) is a (generalized) sum over the microstates 
of the composite system, 

P(N)  is the probability law for the macrostates 
of the composite system, that is, P( N) is the 
MACROSTATE of the COMPOSITE SYSTEM. 

For a composite system of many interacting particles 

the calculation of SG is prohibitively difficult.  Morita 

expresses the total or extrinsic entropy of the composite 

system as the sum of the entropies associated with each 

cluster of the composite system.  In the cluster expansion 

he refers to the extrinsic entropy of the complete system as 

given by, 

SG = S< N) extrinsic = S~< i > intrinsic + S^C 2) intrinsic 

+ . ..S~< «) int. 

where, S~<i) is the intrinsic entropy of all particles 

taken one at a time (singlets) with no interaction between 

the particles and would be the same as Boltzmann's SB. 

Therefore, SB = S~(i) .  The next term S""(2) is the 

intrinsic entropy of a pair of interacting particles and 

then S"'(3) is the intrinsic entropy of a triple of 

interacting particles and so on.  This resolution of the 

entropy also clarifies the relation of SG and SB since we 

could write the expansion as 

S( N) = SG = SB + S~( 2) + S*'( 2) + S'-( 3) + ... S~( «) . 
« 

If there are no correlations among the particles, i.e., if 



P< N)  = Ei=lNP( l)i , 

then S(n> =0 for each n > 1, 

and SG = SB . 

Then Gibbs' entropy reduces to Boltzmann's entropy.  If 

there are interactions among subsystems (particles), then SG 

will differ from SB. 

The complete Morita expansion for the free energy 

(F) is exact but typically we only use the first few terms. 

We refer to the terms as clusters or approximations i.e., 1st 

approximation or 1-cluster etc. 

Morita decomposes a system of N particles into the 

collection of all subsets of these particles: 

"1-clusters" are sets, each containing 1 particle; there 

are N of these. 

"2-clusters" are sets, each containing 2 particles; there 

are N(N-l)/2 of these. 

"n-clusters" are sets, each containing n particles; there 

are N!/(N-n)!n! of these. 

The entire system, then is "the N-cluster"; there is 

one of these.  We could use the familiar notation for 

"combinatorial factor": 

Cn(N) = N!/(N-n)!n! 

There are 2N-1 clusters in all, for a system of N particles 



Any particular n-clus-ter is labeled by the particles it 

contains: 

C(n)ii,i2,i3,...in.  The microstate of the n-cluster 

C( n) i 1 , . . . , in is pni 1 , . . . , in = ()J i 1 , . . . P i n ) .  The 

microstate of the ith particle is Pi ;      the microstate of 

the whole system is pN = (pi,P2, ... PN).  The 

macrostate of the whole system is P(N) = probability of 

each value of pN.  The macrostate of an n-cluster is 

P(n)ii,...in =EP(N> where sigma is 

summed over all the microstates of the particles not 

in the n-cluster. 

The following approximations from Morita's expansion 

for the free energy are the expressions that we will - 

minimize. Only the first two approximations are shown here. 

First Approximation (first term) (see also p.41,68) 

This first term in the Morita cluster expansion, 

known as the first approximation, is the free energy for 

single clusters-one particle at a time, with no interaction 

between clusters.  All correlations at the pair level and up 

are ignored. 

F = U - TS 

U = <H> 

H = -Po (Si=iNxi )B - J$J(i:i = iNxi2 )Z 

0 = N(-EPoBx-JgZJx2 ) 

where F = free energy T = temperature 

U = internal energy      S = entropy 

10 



Z = coordination number*  B = external magnetic field 

H = Hamiltonian J = exchange integral 

X =: magnetization       Po = magnetic moment 

per particle        x2 = interaction between n.n. 

(see p.48) 

*Z is the number of n.n. : Z = 2 in one dimension 

n.n. = nearst neighbors   Z = 4 in 2-dim (square lattice) 

Z = 12 in 3-dim 

In this study of the free energy using the Morita 

cluster expansion the results will be obtained for an FCC 

lattice[9].  A unit cell of an FCC lattice is shown in Fig.l. 

The Morita expansion for only the first term  is, 

S( N) = S~( 1) 

where 

S~(i) = S(i) = 2 [all singlets]S( i)i . 

and   S(i)i = kBtr( 1) iP( 1) i lnP( 1) i is the entropy of 

each single subsystem (or particles) and S( i ) is the entropy 

of all the N subsystems, each taken one at a time, so that 

there are no interactions among the systems, and S'ii) = 

S(i) is the INTRINSIC entropy of these NONINTERACTING 

subsystems. 

S = -kBN[J^(l+x)ln( . ) + }^(l-x)ln(.)] 

F = N{-)JoBx-3^ZJx2 + kBT[^(l+x)In( . )+}^(l-x)ln( . )]} 

or F/NkBT = i^F/N = -(PoB/kBT)x - (ZJx2/2kBT) 

+ [}^(l+x)ln( . )+^2(l-x)ln( . )] 

When the factor that precedes the natural log is repeated as 

its function then the notation ln(.) is used. 

11 



Fig. 1. THE UNIT CELL FOR A FACE CENTERED CUBIC (FCC) 
LATTICE. THE NUMBER OF NEAREST NEIGHBORS IS 12. 

12 



§ = r.F/N r -()J0(?,B)x - (5^^JZ)x2 + [^(l+x)ln( . )+^2(l-x)ln( . )] 

Using a reduced temperature Tr an alternate form can be 

obtained (a^l/ksT) 

Tr    =  kBT/J   =   l/riJ 

Then PoB/ksT   = J-'o B/kB T*J/J   =  PoB/JTr    =   Br/Tr 

where  Br   = PoB/J 

5   =   -(Br/Tr)x   -   (Z/2Tr)x2   +  J^(l+x)ln(.)   +  J^(l-x)ln(.) 

For Br =0 

5   =   -(Z/2Tr)x2   +  }$(l+x)ln(.)   +  ^(l-x)ln(.) 

We find the "best" values for x hy  minimizing (5 . 

0 = d5/dx = -(Z/Tr)x + }^ln}^(l+x) - ^ln5^(l-x) 

= -(Z/Tr)x + 5^1nC(l+x)/(l-x)] 

x = J$(Tr/Z)ln[(l+x)/(l-x)] 

Second Approximation (second term) or 2-Glusters 

+ 1-cluster 

The second approximation is the sum of the first term 

(first approximation) plus the 2-cluster term of 

Morita's expansion, 

S( N) = S~ < 1) + S" ( 2 ) 

where 

S~(2> = I (all pairs)S~( 2)i, j 

and S~(2)i,j - S(2)i,j - S~(i)i - S"-(i)j is the INTRINSIC 

entropy for subsystems of pairs of particles S~ ( i)i and 

S"'(i)j, including any interactions they may have, and 

S(2)i,j = -kBtr( 2) i , jP( 2) i , j inP( 2) i , j is the entropy 

of S~ ( 1 ) i and S~(i-)j including interactions.  The entropy 

13 



due only to the single particles Q" ('^ )    is subtracted from 

the pair entropy. 

F = U - TS 

U = -(N)JoB)x - (^NZJ)y 

S = S~(i) + S~-< 2) 

= -kBN{}^(l+x)ln5^(l+x) + J^(l-x)lnJg(l-x) 

+  3^Z[34(l+2x+y)ln34(l + 2x+y)   +  2*5^( 1-y) lnJ4(l-7) 

+)4(l-2x+y)ln34(l-2x+y)] 

-2[J^(l+x)In}^(l+x)   +  J^(l-x)lnJ^(l-x)]}.      7 

F  =  N{-poBx  -  ^ZJy  +  TkB [J^d+x) ln^( l±x) 

+  3^Z{3i4(l±2x+y)ln34(l±2x+y)   +  ?^( 1-y) lnJ4(l-y) 

-   (l±x)lnJ^(l±x)}]}. 

F/NkBT  =  5   =   -(P0f5B)x  -  J^JZy  +  J^(l±x) lnJ^(l±x) 

+  }$Z{^(l±2x+y)ln(. )   +  ^(l-y)ln34(l-y) 

. -   (l±x)ln^(l±x)}. 

5   =   -(Br/Tr)x  -  J^(Z/Tr)y  +  J^(l±x)ln)^(l±x) 

+  5^Z{^(l±2x+y)ln(.)   +  }^(l-y)ln3i{l-y) 

-   (l±x)ln^(l±x)}. 

For Br   =   0 

S   =   -Jg(Z/Tr)y  +  ^(l±x)lnJ$(l±x)   +  ?^Z[i4(l±2x+y) ln( . ) 

+  }^(l-y)ln34(l-y)   -   (l±x)ln)^(l±x)] 

0   =  fi(x,y)   =  dS/dx   ;      0   =   f2(x,y)   =   dS/dy 

It is helpful to recall that the first few terms of 

the Merita expansion are known by other names - the names of 

their inventors, and later reappeared as terms in the 

cluster expansion for the free energy. (See the names of the 
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inventors associated with the approximations shown in 

figure 5, Chapter II.)  This is interesting since in their 

original form it was sometimes difficult to see how their 

inventors were able to logically derive the equations for 

the free energy.  As these results are rederived in the 

Morita expansion they appear as a consequence of a very 

orderly and logical development and the relation of the 

approximations to each other is now understood.  The physics 

is clear in this new derivation as compared to the original 

derivations where it was sometimes obscure.  The first term 

or first approximation, known as the l-cluster term in the 

Morita expansion, is the same as the Weiss model which uses 

the self-consistent field or molecular field approximation 

for ferromagnets.  The Bragg-Williams model (1934) is a more 

rigorous statement of the Weiss model and gives similar 

results, (see figure 5).  The second term is the 2-cluster 

term and was originally known as the Bethe-Pierls 

approximation used to describe Cu-Zn alloys and is an 

improvement over the Bragg-Williams approximation.  The 

Bethe-Pierls model (1936) takes into account specific short- 

range order, i.e. local correlations between spins.  The 

second approximation is the sum of the l-cluster and 2- 

cluster terms. 

Some items of procedural interest 

A. Particle Ncunes 

Label the N particles of a system using the N 
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counting: 1,2,...,N.  This labeling is arbitrary.  The same 

same labeling is used unchanged throughout this work. 

A "cluster" of particles is a set of particles, 

that is, an unordered list of particles.   For example, 

{il,...,in} = {io<}na=i is a particular cluster of n 

particles.  This is also called an n-cluster of the 

particles of the system. The individual particles in that 

cluster are called ii ,i2, . . .in.  In a system of N 

particles, there are the following n-clusters: 

size of cluster     generic name       specific names 

N 1-clusters {i}     {1},{2},...,{N} 

3^N(N-1) 2-clusters {ii,i2}     {1,2} 

(l/6)N(N-l)(N-2)      3-clusters {ii,i2,i3} 

N(N-l) N-cluster {ii,...,in} 

In all, there are 2N -1 n-clusters. 

Cluster function: < - ;, 

A "cluster function" is a function of the microstate 

of the particles making up a cluster.  For example, 

f< N) (ii , . . . , in ) = f (Pi 1 ,Pi 2 ,Pi 3 , . . . ,Pin )  is an 

n-cluster function, where Pi is the microstate of the ith 

particle and Pii ,Pi2 , ... ,Pin is the microstate of 

{ il , . . . , in } . 

So Pi is the microstate of particle ii 

P2  "  "   T  "      "     "     i2 
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In particular, the macrostate of an n-cluster is a cluster 

function. 

Names: 

There are N particles arranged on N sites of a 

lattice.  Sites are located at the positions 

r = ni bi + n2 b2 + ... n3 b3 

where 

bi is the ith base vector of a unit cell of 

the lattice, and each ni is an integer. 

Sometimes it will be convenient to name a particle 

for the site it occupies.  Then we speak of the particle 

ni ,n2.  However, for much of the formal discussion of this 

work, it will be convenient to assign the cardinal numbers 

{1,2,...,N} to the particles in some way, and then denote a 

particle by this cardinal number.  So, we speak of the ith 

particle. 

P<n)il,i2,...,in =P(n>il,i2,...in (Pil,Pi2,...Pin) 

is the macrostate of the cluster C('^)ii, ...in,i.e., 

P( n>i1, . . . ,in is the probability of the microstate 

Pii , . . . ,Pin. 

A "cluster quantity" is the average of a cluster 

function; it depends on the macrostate of the cluster. 

A "cluster variable" is either a "cluster 

function", or a "cluster quantity".  Cluster variables 

can be "extrinsic" or "intrinsic".  We suppose we can obtain, 

perhaps by a direct measurement, the value of a cluster 
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variable for any isolated cluster: these are extrinsic.  We 

then define the intrinsic cluster variables: 

f( i)i = f*( i)i 

f<2)ij = (f-(i)i + fMDj ) + f*(2>ij 

f<3)ijk = (f-(i)i + f'(i)j + f-(i)k ) 

+ (f*< 2>i j + f*( 2)iic + f'( 2) jk ) 

+(f-(3)ijk ) 

f< n> ii, 12, . . . in = (S j=inf( 1 > i j ) 

+ (i:jkf*( 2) i jik ) 

These can be inverted to define any particular intrinsic 

cluster variable entirely in terms of extrinsic cluster 

variables only. 

f'(i)i = f(i)i : •  , 

f-( 2)i j  = f( 2)i j-(f< l)i+f( 1) j ) 

f*(3)ijk = f(3)ijk- (f( 2)i j+f( 2)ik+f( 2) jk) 

+ ( f < 1 ) i +f ( 1 ) j +f ( 1 > k )       ,   • 
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f ( n) il , 12, . . . in = f( n) i 1 , i 2, . . . in-(5:f( n-n i . . . i ) 

+ (i:f( n-2) i. . . i ) - ... 

Examples". 

H = i:h-(i)i +i:h*(2)ij +. . .EW N) 12. . . N 

The Hamiltonian H is an extrinsic, N-cluster function. 

It is expanded into intrinsic n-cluster functions. 

U = S <h~ ( 1 ) i > + E <h" ( 2 ) i j > + . . . 

The internal energy U is an extrinsic N-cluster quantity 

It is expanded into intrinsic n-cluster quantities. 

S = -kBE)JiEP2 . . .I:PNP< N) lnP( N> 

= S'( 1) + S*( 2) + ... + S'-C N) 

where 

S* < 1) = L i Si ■■ ( 1 > 

S"( 2) = Ei jS-( 2) i j 

S'< 3)  = £i jkS-( 3) i ju 

The entropy S is an extrinsic N-cluster quantity.  It is 

expanded into 

S( 1 ) i =5^(1) = -kBE (Pi )P( n i lnP( 1 > i 

S( 2 ) i j = S( 1 ) i + S( 1 ) j + S" ( 2 ) i j 

= -kBEPiZP2P( 2)i j lnP( 2)i j 

etc. 

B. Summing over clusters, and the effects of symmetries 

An n-cluster is defined by the n particles it 

contains: the order of these particles is of no consequence 
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to the definition of the n-cluster, [So {1,2} is the same as 

{2,1}, and {ia}(a=l-->n),is the same cluster as 

{Pia)}(«=l-->n), where P is any one of the n! 

permutations of the n numbers 1,2,...,n.]  So, while there 

are n! distinct lists, i.e. arrangements, of the n numbers 

1,2,...,n, all these lists name the same cluster: 

{1,2, . . . ,n}, {io<}a. 

Sums of 1-cluster quantities: 

Ev(i)     E{aXl 1-cl uater s ) Q( 1 > i 

= Zi=lNQ( l)i 

=Q< 1 ) 1    +   Q< 1 > 2    + . . . +   Q( 1 ) 3 

SVij lall     2-cl ua teraQ( 2) i j 

=   '^i=lNZj=lNQ< 2)i j 

(i    =/    J) 

=   J^(Q< 2)12    +. . .+   Q( 2) IN 

Q( 2) 21   +. . .+ QNI 

Q( 2)N1     +   Q( 2)N2    +. . .     ) 

=   i:i=lN-lEj=i+lNQ( 2) i j 

=   Q(2)i2    +   Q(2)i3    +...+   Q(2)iN 

+ . .+   QN( 2) N-1 

[Note  that     Q(2)ij    =  Q( 2 ) j i ] 

Svijk 

X!all3-clustersQ(3)ijVc 
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-(1/3! )EiSj}:kQ( 3)iok 

(i=/j=/k) 

=!:i=lN-2Sj=i+iN-lSk=j+lNQ(3)ijk 

[Note  that     Q( 3 > i j k   =   Q( 3 > i k j    =   Q( 3 ) j i k   =   Q( 3 > j k i 

=   Q( 3)ki j    =   Q( 3)kji ] 

Zall    n-cluster3Q(n)il,i2...in 

= (l/n! )Sil=lNEi2 = lN . . . 

i:in = lNQ<n)iii2...in 

(i«   /=   iPi   for  any a ,(i   =   1,N  except  when a   = d 

=21 1 =lN-nZ;i 2 = i l+lN-n + l . . . 

Lin = in-l+lNQ<n)iii2. . . in 

For similar particles on a regular lattice, we can 

drastically simplify the above sums.  We use the 

"n-coordination numbers", defined as follows: 

Z( 2)p -   pair coordination number for spacing p 

= number of 2-clusters whose spacing is p, 

Z( 3) pqr = tri-coordination number for spacings p,q,r 

= number of 3-clusters whose sides have 

lengths p,q,r, with piqir. 

Z( 4)pqrs -   quad-coordination number. . . 
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etc. 

Sail    l-clustersQ<l)i     =   N*Q< 1 > a 

for a   =   any  one  of   {1,2,...,N} 

Eall    2-clu3ter3Q< 2) i j    =   J^NI p Z( 2 ) p Q< 2 ) « , ^ , 

for a ,(i , =any  of   {1, 2, . . . N}   such that 

|r->0(   -   r->(i 1—>p 

Sail    3-elu8teraQ( 3)i jk    =    ( 1/3 ! ) NZ pE qZ r Z( 3 ) pq r Q( 3 ) « , |^, , f 

for any a,(3,r or any permutation of these. 

etc. 

C.Microstates and Macrostates 

The microstate of the jth particle is Mi : its values 

fall in some discrete or continuous set.  For the Lenz-Ising 

model, the values are +1 and -1.  The microstate of an 

n-cluster is the set of the microstates of each particle 

contained in it: 

M<n)ii,...in = {Mil, Pi2, . . .Pin} 

In particular, the microstate of the N-particle system is 

the set of the microstates of each particle: 

. P( n) = {Ml ,M2 , . . . ,Mn} . 

The macrostate of the N-particle system is a 

probability law defined on the set of possible microstates 

M( M) : 

P(N> (p(N) ) = probability of P( N) 

The task of <Bquilibrium statistical mechanics is to 

determine this macrostate. 

From the macrostate of the system, P( N) , we can extract 
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the macrostate of any subsystem: 

P( n) (pii , . . . ,Pin ) 

= EPi . . .EPNP( N) (Ml ,P2 , . . . ,PN ) 

(except Pi ,P2, . . .Pin) 

(1) From this, it follows that the macrostate of any 

n-cluster determines the macrostate of all the n'-clusters 

( n'< n ) contained within it. 

(2) We note that all macrostates are normalized: 

rPil . . .2PinP( n) il , . . . , in =1 

(for all n and all {io(}[o( = l -> n] ) . 

D. A note on summing over n-clusters 

We often sum over all the various n-clusters, for a 

given value of n.  We also often sum over all the various 

microstates of a given n-cluster (e.g., when computing a 

thermal average).  It is convenient to represent these very 

different sorts of sums with very different sorts of 

notations.  So, henceforth we will use 

SiiSi2 . . .Ein [ . ] = Sail n-cluater[.] 

(ia =/ ifi V«,(3 XXX cx=(? ) 

EPilEPi2 . . .EPin [. . ] = tr( n) ii, i 2. . . in [. ] 

respectively, for the two different sorts of sums. 

E. Representation of macrostates 

It is a well-known result that a probability law is 

equivalent with the set of all of its moments. 

A common (sketch of a) proof is: 
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(1) P(x) = probability law for a random 

variable x.    : 

(2) R(k) = n-<i)«P(x)exp(ikx)dx 

is the Fourier transform of P(x). 

[n represents an integral sign] 

(3) R(k) = R(0) + R'(0)k + R"(0)k2/2 + ... 

is the Taylor's series of R(k) . 

(4) By inspection of (2) : 

R(0) = n-«»P(x)dx =1 

by normalization of P(x). 

R'(0) = in-cDa>xP(x)dx = x- is 

the 1= t moment of x. 

Note: X- represents x with a "bar" superscript. 

R''(0) = (i2 )n-«fflx2P(x)dx 

= (x2)- 

is the 2nd moment of x. 

(5) Hence, R(k) = 1 + ikx" + }^(i2)k2x2- + ... 

(6) Hence, if we are given  P(x), then we can calculate 

all the moments, either directly, 

( xn ) - = n - <n<n x" P ( X ) dx , 

or indirectly, 

(xn)- = (dnR/dkti)k = o . 

If we are given all the moments, then we can construct 
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R(k) = 1 + ikx- + (i2)k2(x2)- + ... , 

and inverse-Fourier transform it to get P(x) : 

P(x) = J^n-»a)exp(-ikx)R(k)dk 

QED. 

This rule extends to the case of a set of (possible] 

correlated  random variables : 

P(x) is equivalent with iTa = inxio< for all n. 

When the microstate of each particle is bi-valued, 

Pi = ±1, then the macrostate of the particle is 

P<i)i (Mi ) = P( i)i / 1 \ = Yl+x< i)i\ 

V-iy   \l-x(^)J 

where 

x<i>i = <Pi> = tr< i)i [P< i)i (Mi )Pi ] . 

clearly, P(i)i(Mi) is equivalent with <M2> each 

determines the other. 

The macrostate of larger clusters can also be expressed in 

terms of moments: 

P< 2)i j (MiMj )   =   H 

where 

1 + X< 1) i - X< 1 ) j + X( 2 ) i j 
1 + X( 1 ) i - X( 1 ) j + X< 2 ) i j 
1 - X< 1 ) i + X< 1 > j - X< 2 ) i j 
1 - X( 1) i - X( 1 ) j + X( 2 ) i j 

X<2)ij     =    <MiMj>    =    tr< 2)i j [P( 2)i j (Pi  ,pj  )pi)jj 3 

P< 3) i jk(MiMjMk )   =   P( 3) i jn 1    1    1 
11-1 
1-11 
1 -1 -1 

-111 
-1   1 -1 
-1 -1   1 
-1 -1 -1 
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= 1/8 

1+X( l)i +X< 1) 0     +X(l)k    +X(2)ij     +X<2)iVc    +x<2)jV(    +x<3)ijk 
1+ + - + 
1+ - + - + 
1+ - - - - +                       + 
1- + + - - + 
1- + - - + -                       +               - 
1- - + + - -                       + 
1- - - + + + 

where 
x< 3) i jk    =   <»JiPjPk> 

=   tr< 3)i jit[P( 3>i jn(pipjpk )PiPjPH] 
And so on. 
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CHAPTER II 

SHORT HISTORY OF THE LENZ-ISING MODEL 

The following remarks are intended to provide some 

additional background information for the Lenz-Ising model 

with particular reference to ferromagnetic systems. 

We focus attention on the Lenz-Ising model as a 

mathematical object existing independently of any particular 

physical system.  The Hamiltonian used in the Lenz-Ising 

model is a definition of this model.  The Hamiltonian we are 

using is for nearest neighbor (n.n.) interaction only 

between the particles in the system.  This system for 

interacting particles, is the simplest one that it is 

possible to study.  It is not an exact description of any 

specific physical system such as a ferromagnet, an alloy  or 

a liquid.  The results can be expected to give the general 

shape of the magnetization curve and the value of the 

critical temperature but not the details for any particular 

physical system.  This however is only a limitation of the 

Hamiltonian that is used and the mathematics necessary to 

study it.  Results that more accurately describe a specific 

physical system can be obtained by using a Hamiltonian that 

is an improved representation of that system. 
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History 

To explain the experimental results obtained by 

Stern and Gerlach in 1922 it was proposed by Uhlenbeck and 

Goudsmit in 1925 that the electron possesses a spin S=l/2 

and that it is oriented either parallel or anti-parallel to 

the field[10].  Ising published in the same year the results 

for a model based on a suggestion of his thesis advisor 

Wilhelm Lenz, that if electrons were located on a lattice 

and if an interaction were introduced between nearest 

neighbor spins that favored parallel alignment of spins, 

then at sufficiently low temperatures the spins would all be 

parallel, and the model might provide an atomic description 

of ferromagnetismCll,12].  The Hamiltonian corresponding to 

this model, and which expresses the internal energy of the 

system can be written in the form, 

H = -MoBEPi - JLij(sum over all n.n. pairs)PiPj 

where the interaction integral (J > 0) represents the 

interaction between spins, B is the magnetic field, Po the 

magnetic moment of a single spin, and Pi or Pj = ±1 is 

the spin state of the ith electron on the lattice.  The 

suffix i runs over all sites of the lattice, and <i,j> 

over all pairs of sites i and j which are nearest neighbors. 

Ising studied this model in one dimension; his exact 

results showed that spontaneous magnetization did not occur 

at any temperature.  This result is correct.  He extended 

the one dimensional results to higher dimensions, 
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incorrectly, and did not find any phase change in two or 

three dimensions.  This result is incorrect.  Subsequent 

calculations by others has shown that there is not a phase 

transition in one dimension as correctly shown by Ising, but 

for two or more dimensions, spontaneous magnetization does 

occur below a critical temperature.  It was unfortunate that 

Ising's results in two and three dimensions were incorrect 

since it caused the model to be discarded for many years. 

The model was later rediscovered and solved exactly, in zero 

magnetic field, for two dimensions by Onsager in 1944[13,14]. 

Lenz - Ising Model 

Further work has shown that by a change of names the 

Lenz-Ising model can be made to simulate various systems 

[15,16].   Examples of such systems are (1) magnets, in 

which each molecule has a "spin" that can be oriented up or 

down relative to the direction of an external applied field; 

(2) binary alloys such as Cu-Sn; (3) liquids which can be 

represented by molecules and "holes" (i.e. empty spaces) on 

a lattice (this is called a "lattice fluid") and there are 

more examples.  These physical systems can all be 

represented abstractly by the same model which can be 

described in the following way.  We assign a two-valued 

variable (+1 or -1) to each node of a regular space lattice 

to represent the spin Mi , associated with each node i of the 

lattice.  For a magnet P corresponds to an electron spin 

state.  For an alloy P corresponds to an ion type (say Cu 
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vs. Sn).  For a "lattice fluid" P corresponds to the 

presence or absence of an atom.  A configuration of the 

lattice is a particular set of values of all the spins, and 

for N nodes there are 2N different configurations.  An 

example of a configuration is shown in Fig.2. 

In this model it is assumed that the forces between 

molecules are only short range i.e., only nearest neighbor 

(n.n.).  When neighboring spins are the same (both +1 or 

both -1) the energy is -J and when they are different (one 

is +1, the other is -1) the energy is +J[12]. 

The interaction tends to align the n.n. spins as 

parallel and to give aligned spins the lower energy state. 

Heisenberg in 1926 was the first one to describe the reason 

for this interaction between spins. It is an electrostatic 

interaction, a Coulombic type force that causes the spins to 

align.  And so the spin couplings which manifest themselves 

as magnetic effects are in fact due to electrical forces 

which cause the spins to be parallel and antiparallel.  The 

symmetric or anti-symmetric wave functions that the electron 

spins are part of must of course satisfy the rules of 

quantum mechanics.  For the three physical systems described 

above, this interaction could result in (1) spontaneous 

magnetization, with most spins in the same direction, even 

with B = 0; (2) transition between an ordered superlattice 

and a lattice with random arrangement of atoms on the 

lattice points; (3) condensation of molecules in one region 
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H = -MB B (+6-3) + (-7J + 5J) 

H =%B B - 2J 

Fig. 2. A POSSIBLE CONFIGURATION OF A FINITE SQUARE LATTICE. 



of space (clustering), leaving empty space in the rest of 

the container[ll]. 

For ferromagnetism the total internal energy is the 

sum of the interaction energy and a magnetic energy term 

-poBMi for each lattice point.  For magnetic systems, Mo is 

a characteristic value of a magnetic moment (such as the 

Bohr magneton) and B is an external magnetic field (see 

figure 2).  For other physical systems this term -PoBPi may 

be any parameter which plays the role of a "chemical 

potential" in determing the average number of up and down 

spins, or average composition of a mixture, or average 

density of a molecule-hole system. 

For ferromagnetic materials we calculate the mean 

value of electron magnetic moment as[10], 

M = NMotanhft 

where N = number of atoms per unit volume, Po is the 

magnetic moment per atom, and i'i   represents pBa/ksT where Ba 

is the mean field acting on the atom, and kBT is the 

Boltzmann energy and P is the magnetic moment per electron 

equal to q/2m times its g-factor, times its angular momentum 

J-> .   To calculate the internal energy of the material, we 

note that the energy of an electron is exactly proportional 

to the magnetic moment.  We replace Po with -PoB to 

calculate energy and B can be written as (H + rM/'Soc2 ) where 

H is the magnetizing field and r has been called the 
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"exchange" force and is due to the exclusion principle in 

quantum mechanics. (Note: we are using r for the "exchange" 

force in this discussion to avoid confusion with J-^ the 

angular momentum.  In the rest of this work J will represent 

the "exchange" force).  Theoretical predictions for the value 

of r are failures.  The most recent calculations of the 

energy between the two electron spins in iron-assuming that 

the interaction is a direct one between the two electrons in 

neighboring atoms-not only do not give the correct value but 

even give the wrong sign.  With these substitutions the 

mean energy of the material can be written as, 

<U> = NPo [H-HrM/2'i:oc2]tanhl'i 

The "2" is inserted to correct for overcounting.  The term 

rM/iSocZ represents interactions of all possible pairs of 

atoms, and we must count each pair only once.  With H = 0 we 

can rewrite this equation as, 

M/Maat = tanh[(Tc/T)(M/Msat )] 

where Msat = NJJ and Tc = prMsat/Ic!: oc2 . 

The solution to this equation is shown in Fig.3. For 

the energy of the spontaneous magnetization below the Curie 

point, we can set H=0, and note that tanhl'i = M/Msat . The 

mean energy is proportional to M2, and can be written as 

<U>av = -NMTM2/[2'ii0c2Maat ] . 

If we plot the energy due to the magnetism as a function of 

temperature, we get a curve which is the negative of the 

square of curve of Fig.3, and is drawn in Fig.4a.  If we were 
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(b) 

(c) 

Fig. 4. THE ENERGY PER UNIT VOLUME AND SPECIFIC HEAT OF 
A  FERROMAGNETIC CRYSTAL SOURCE: SEE Figure 3, Page 34 
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"to measure the specific heat, of such a material we would 

obtain a curve which is the derivative of Fig.4a, and is 

shown in Fig.4b.  The true situation is more complicated 

and both experiment and improved theory suggest the curve 

should be more like that shown in Fig.4c.  The curve 

goes higher at the peak and falls to zero somewhat slowly. 

In Fig.5 several specific heat curves are summarized 

for a two dimensional Lenz-Ising model calculated with 

various methods of approximation [17].  Onsager's exact 

solution for B = 0 is shown for comparison[13].  Approximate 

methods [18,19] have attempted to reproduce the singularity 

in the specific heat and other thermodynamic functions at 

the transition point.  Methods such as using Pade's 

approximants [11] to extrapolate series expansions of the 

partition functions and thermodynamic properties have been 

used in the past twenty years.  The more recent 

renormalization group work has given the most accurate 

results at the critical point [20].We are using a different 

approach to understanding the behavior of the model over a 

range of temperatures and magnetic fields:  we are 

expressing the free energy of the Lenz-Ising model using the 

Morita cluster expansion and then minimizing the free energy 

expansion to obtain the equilibrium macrostate Po and then 

studying the resulting approximation to the thermal 

behavior. ;  ,.. 
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Diagrama-tically this method can be outlined as shown 

in Fig.6.  The last step shown in Fig.6, to "study Fo", 

means to study these behaviors:[21,22] 

"Study Fo" 

U = F-TS = F+T(>5'F/>5'T)B i.e. U can be 

obtained from F and its derivatives. 

-M = (.5'F/,yB)T CB = («fiS/.5T)B 

-S = (c5-F/vi'T)B X = (v5'M/6'B)T 

where  M is the magnetization 

S is the entropy 

F is the Helmholtz free energy 

T is the temperature 

B is the external magnetic field 

U is the internal energy 

CB is the specific heat at constant magnetic field 

X is the magnetization/particle 

In this work we also use S, the free energy in reduced 

units: 

S = F/NJ, 

where N is the number of particles in the system and J is 

the interaction energy. 
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CHAPTER III 

EXACT SOLUTION OF THE LENZ-ISING 

MODEL FOR SMALL SYSTEMS 

Exact Solution for A System of One Particle 

The Cluster Expansion Method used in this work 

involves approximating the behavior of systems of many 

particles as a concatination of simpler systems: systems of 

one particle, systems of two particles, and so on.  In order 

to introduce the notations and methods used here in a simple 

and exact context, we begin hy  studying small systems. 

Because these small systems can be studied exactly, their 

behavior serves as a measure of the consequences of the 

approximations used in the Cluster Expansion Method. 

The equilibrium behavior of the Lenz-Ising system of 

N particles for fixed temperature T and magnetic field B is 

given by Gibbs' canonical prescription: 

Z(T,B,N) = EPexp(-riH(P)) 
is the canonical partition function, 

F(T,B,N) = -kBTlnZ 
is the equilibrium free energy, 

P(N)(p;T,B) = exp(-/'.H(P))/Z, 
is the equlibrium macrostate 

which follows exactly from minimization of F(PN) versis 

P<N).  Since there are 2N distinct microstates, Z(T,B,N) has 
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2N terms, before any combining of similar terms is effected; 

hence, Z can be explicitly calculated for small enough 

values of N.  When N = 10, 2N = 1024; direct computation of 

Z is feasible, particularly if a computer is used.  When N = 

20, 2N as 106; direct computation of Z is just within the 

bounds of feasibility with current large computers.  When 

N = 30, 2N « 109; direct computation of Z is currently 

infeasible. 

In order to introduce the notations and methods used 

we shall discuss the cases N = 1,2,3,and 4. 

Microstate: 

The microstate for this one particle system is a 

two-column 

at any instant, the system is either spin-up (M = +1) or 

spin-down (V = -1). 

Energy: 

The energy H is H = H(M) = -poBM 
where, 

P is the microstate, 
Po is the magnetic moment of the particle, 

and B is the magnetic field. 
The exchange term -JMiPj does not exist here, 

since there can be no pair interaction when there is one 

particle. The system is an ideal paramagnet which is a 

trivial case to study. 

Macrostate: 

The macrostate is the probability law for the 
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microstate, 

P = P< 1 ) (M ) = P< 1 > /+l\ = /a\ 

where  "a" is the probability that the system is spin-up,and 

"b" is the probability that the system is spin-down.  Since 

"a" and "b" are probabilities, 

a i 0 constraint 1 
and   b > 0 

and 
a + b = 1 constraint 2. 

It is more convenient to express P(y) in terms of a single 

number controlled by a single constant, mainly the average 

magnetization 

x=<p> = a-b, 
-1 < X i 1 , 

with 
a = (1 + x)/2 
b = (1 - x)/2  ; 

P = J^/l + x\ with  -1 < X i 1  . 

V - V 
Internal Energy: 

The internal energy of this spin is 

U = <H> = Ziy = -i [H(P=+1)P< 1) (P= + 1)+H(M=-1)P( 1) (P=-1)] 

= H(P= + 1)P< 1) (M=l) + H(P=-1)P< 1) ()J=-1) 

= (-PoB)a + ()JoB)b 

= (-MoB)[^(l+x)] + OJoB)[}$(l-x)] 

= (PoB)[(-J^)(l+x) + J^d-x)] 

= -(PoB)x . 

Entropy: 

The entropy of this spin is 

-S/kB = <lnP> = Eip = -iP( 1) (P )lnP( 1) (P ) 
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= P(i) (-l)lnP< 1) (-1) + P( 1) (l)lnP( 1) (1) 

= a*ln(a) + b*ln(b) 

= ^(l+x)ln3^(l+x) + ^(l-x)ln^(l-x) . 

Free Energy: 

The same term "free energy" is used for two distinct 

properties: On the one hand, it is used for the function 

F(P) = U(P) - TS(P), 

where P is any macrostate at all, not necessarily one 

corresponding to any kind of equilibrium.  On the other 

hand, it is used for the function 

F(T,B) = F(Peq(T,B)) 

where Peq = Peq(T,B) is the unique macrostate describing the 

system in equilibruim at a temperature T and in a magnetic 

field B. The context of use will always make clear which 

function is meant. 

The free energy for any macrostate P(x) is 

F(x) = U(x) - TS(x) 

= -PoBx + kBT[5^(l+x)lnJ$(l+x) 

+ J$(l-x)lnJ^(l-x)] . 

We now vary x to locate the value that makes F a minimum: 

0 = {SF/Sx.) 

,  = -PoB + kBT[J^lnJ^(l+x) - JglnJ^(l-x)] . 

The solution of this equation is 

xmin = tanh(PoB/kBT) = tanh(f3PoB), 

where (i   = l/kfiT 

The minimum value of F is 
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Fmin   =   F(xmin)   =   -J-J 0 Btanh[^J)J 0 B] 
+  kBT{3^[l+tanh(|'l)JoB)]lnJ^[l+tanh(rJPoB)] 
+  ^[l-tanh(riPoB)]ln3^[l-tanh(C.PoB)]}   . 

Examination  of   (S^F/Sx^)   shows  that this   is   actually   a 

minimum of   the  free  energy,   and  consequently  xmin   and  Fmin 

are the  equilibrium values: 

F   =   Fmin 
X   =   Xmi n . 

Other Quantities: 

With the equilibrium value of the free energy F 

known, we can find the equilibrium value of other 

properties: 

S = -{SF/ST)   = -kB[^(l±x)ln5^(l±x)] . 

0 = F + TS = <H> = - PoBx . 

Specific  Heat:      CB   =  T(5S/(yT)   = dTU/i'T   . 

Magnetization:      M  = SF/SB  =  NxPo   =   NPotanh(JJoB/kBT) . 

Suspectibility: chi = (i-M/JB)T . 

= [NPB2/kBT]sech2 (PBB/kBT) . 

For PBB << kBT, 

chi = CP/T 

where CP = NPB2/kB 

is the Curie constant. 

A System of Two Particles 

We derive exactly the equilibrium free energy F and 

the equilibrium macrostate P( 2) for the Lenz-Ising model 

with two particles as a function of the external magnetic 

field B and the temperature T.  These exact results will be 
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obtained using the approach of the cluster expansion method 

in order to illustrate this method in a simple case; the 

method of Gibbs ensemble is also used.  Comparison will be 

made between these exact results and an approximate solution 

which estimates the probability distribution as the product 

of single particle probability functions. 

Cluster Expansion 

We first derive the exact results using the free 

energy minimization method.  The free energy for an 

arbitrary macrostate P< 2) is given by    '•- 

F(P< 2) ) = U(P( 2) ) - TS(P( 2) ) 

where U is the internal energy, 

and  S is the entropy. ■" -' 

For a specified temperature T and magnetic field B, a unique 

macrostate P(2)niin minimizes this free energy F; this 

macrostate is the equilibrium state for the specified T and 

B,and Fmi n = F(P(2)min) = F(T,B) contains all the system's 

equilibrium behaviors. 

Microstate: 

The microstate of the system is M = (Pi ,)J2 ) where 

Pi is the microstate of the ith particle. 

Energy: 

The hamiltonian H is 

H = PoB(Pi+M2)-JpiP2, 
where 

B is the external magnetic field 
Po is the magnetic moment of each particle 

and J is the exchange integral . 

Macrostate: 
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The macrostate of the system is P<2) 

1 1 =    H l+Xl +X2 +7 
1 -1 1+xi -x2 -y 

-1 1 1-xi +X2 -y 
-1 -1 1-xi -X2+7 

P< 2) (JJ) = P( 2) 

where    xi = <)Ji > for i = 1,2 
and       y = <P1P 2 > . 

Note that  -1 i xi < +1 and that  -1 < y < +1 . 

" This system is now assumed to be unchanged under 

exchange of its particles. 

Because the magnetic field B is uniform in space, 

so that it acts equally on each particle, and because all 

particles have the same properties, then all equilibrium 

properties must be unchanged under exchange of xi and x2. 

Hence, the equlibrium macrostate can depend only on a common 

value . , ^ : 

X = XI = X2 : 

P( 2) -  \ l+2x+y 
1  -y 
1  -7 
l-2x+y 

and this simpler expression will be used below. 

Internal Energy: 

The internal energy U is 

U = <H> = -(PoB) (Pi + M2 ) - JP1P2 

= -2POBX - Jy. 

Entropy: 

The entropy S is 

S   =   -kBZaXl    statesP< 2)  (p)lnP( 2) (p) 

=   -kB[34(l + 2x+y)ln(H)(- )   +2*34(l-7)ln(54)( ■ 
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Free Energy: 

The free energy F is, 

F = U - TS = -2PoBx - Jy + kB T{ [J4( l+2x+y) ] ln[ . ] 

+ 2[(34)(l-y)]ln[.] + C^(l-2x+y)]lnC.]} . 

Note:  The notation [.] means the quantity which precedes 

the logarithm is repeated as the argument of the logarthira; 

that is, 

[A]ln[.] 3 CA]ln[A] . 

We vary x and y in the free energy to (1) locate 

those values of x and y which minimize F, and (2) to locate 

the corresponding minimum value of F. 

(x-eqn.) 

0 = (<JF/5x)y,B,T 

= -2PoB + kBT[(34)21n(J4)(l+2x+y) - (^)21n(^) (l-2x+y) ] 

or 4«PoB = ln[(l+2x+y)/(l-2x+y)] . 

(y-eqn.) 

0 = (JF/6'y)x.B,T 

= -J + kBT[34ln(?4)(l + 2x+y) 

- 2(JC)ln(^)(l-y) + (5^)ln(54)(l-2x+y)] 

(l+2x+y)(l-2x+y) 
or AdJ   -   ln[   ] . 

(l-y)<2> 

These are two simultaneous, non-linear equations in the two 

unknowns x and y.  Their solution gives the minimizing 

expressions for x and y: 

y = tanh{^J+(3^)lnCcosh(2(3PoB)]} 
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X = '^(l+7)tanh(2^PoB) . (1) 

Note that this solution has the correct behavior 

under a "mirror reflection" of the magnet.  Such a 

reflection causes these changes: 

X  -->  -X     . 

V     —>   7 
B  —>  -B 
T  —>   T 
J —>  J ; 

These are compatible with equations (1). 

When J = 0, this system becomes simply a pair of uncoupled 

particles, that is, a pair of the systems studied in the 

previous section.  Indeed, when J = 0, equations (1) become 

y = x2 , 

i.e., the particles are uncorrelated, and 

X = tanh^PoB , ,, 

as shown in the previous section. 

To calculate the minimum value of the free energy we 

substitute (x,y)min into F(x,y,;T,B), obtaining F(T,B). 

Gibbs Ensemble: 

Following the suggestion of Dr. J. Goldman we next 

derive the same exact results for a Lenz-Ising model of two 

particles using the Gibbs ensemble method. 

The equilibrium free energy is given by 

F = -kBTlnZ 

where the partition function Z,is expressed by, 

Z = EPexp[-^.H(P)P)]; d   -   l/kfiT 

H(M) is the energy per each microstate 

= -poB(Pi +M2 ) - JJJ1P2 . 
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The macrostate is 

P(P) = exp[-fiH(P)]/Z . 

For the Lenz-Ising model with N = 2, the microstates are 

and E(P) = E /+1 +1 
+ 1 -1 
•1 +1 
-1 -1 

Using these values, we calculate Z and then F: 

F = kBTln[4exp(r )cosh(r+ilJ)] 

where r = )$ln[cosh(2/iyoB) ] . 

The macrostate is 

l+2x+y 
1 -7 
1 -7 
l-2x+y 

1/Z exp[-(3E(+l,+l)] 
exp[-^.E(+l,-l)] 
exp[-(BE(-l,+l)] 
expC-f>E(-l,-l)] 

By  direct comparison we find 

H(l   - 7) = expC-flE(+l,-l)]/Z ; 

hence,        y =  tanh{(3J+'$lnC cosh ( 2(^.^0 B) ] } , 

which is the same expression for y  as obtained previously 

using the cluster expansion. 

Further, by direct comparison, we find 

l + 2x+y = 4exp[('i (2PoB+J)]/Z 

l-2x+y = 4expCfl (-2JJoB+J)]/Z 

xG = {exp[(3 (2PoB+J)]-exp[(3 (-2POB+J)]}/Z 

and 

hence 

or, 

XG   =   xc luster   =   J^( 1+y) tanh2l'j|J 0 B 

as  previously  obtained. 
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Magnetization: 

Magnetization  =  M  = Mo(Pi+)J2)=2)Jox 

=   (2Po/2)(l+y)tanh2/iPoB   ... 

Magnetic Suspectibility: 

Susceptibility = chi = (>5M/6'B)( B = o) 

= (2P0/2)[(<5'7/«5'B)( B = 0) ]tanh(2i^)JoB) 
+ (2>Jo/2) (1+y) (sech22(3poB)2(3Po 

= (2i^Po2 )(l+tanhiJ) T" 

Comparison of Exact P<2) with the Macrostate 
for Two Uncorrelated Paticles: 

This system has two particles, and the behavior of 

these is correlated by the exchange term -JP1P2.  To measure 

the extent of the correlations between the particles one 

computes the macrostate which 

(1) is consistent with the exact one-particle 

macrostates P< 1) ( 1) and P( 1) ( 2) , 

and (2) has no correlation between their particles: 

[P( 2)  (P1P2 ]uncorr el ated    =   P( 1 ) ex a o t M 1 P< D ex a c t JJ 2     . 

This uncorrelated macrostate is 

[P< 2)  (pi)J2 )]uncorrelated    =   ^,   1+Xl    *5^   1+X2 
1-Xl 1-X2 

(1+Xl)     1+X2 
1-X2 

=    ^   

1+X2 
(1-Xl  )     1-X2 

(1+Xl)(l+X2)                   1+X1+X2+X1X2 
(1+Xl)(l-X2)                  1+Xl -X2 -XI X2 

3    ^                ^^       . 

(1-Xl)(l+X2) 1-X1+X2-X1X2 
(l-xi)(l-x2)     l-xi-x2+x:x2 

For the systems of interest in this work, xi = x2 =x; hence, 
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P( 2) uncorrelated 

l+2x+x2 
1 -X2 
1 -X2 
l-2x+x2 

=    ^ 

) 

(1+X)2 
(l+x)(l-x) 
(l-x)(l+x) 
(1-X)2 

On the other hand, the exact case is 

P( 2) exact =  ^, 
l+2x+y 
1 -7 
1 -7 
l-2x+y 

If the two particles were uncorrelated (i.e., J<<kBT), then 

P( 2) uncorrelated = P( 1 ) ex ac t *P( 1 ) exac t , and SO 

7   -   <JJlP2>exact = <M 1 ><)J 2 > = XI X2 = x2  . 

Hence one measure of the extent of correlation is the size 

of the difference <Pi)J2> - <Pi><P2 = y - x2 ; this difference 

is zero for uncorrelated particles. 

Other Results: 

Other results for uncorrelated particles are as 

follows:   . 

Uuncor r el at ed = Hav = - PoB(xi+X2) -J<Pl)J2> 

= JJoBCxi +X2 )   -Jyi 2 

=   -2PoBx  -Jx2    , 

-(S/kB )uncor related    =   P( 2 )  (++) lnP( 2 )  (++)    +P( 2 )  (+-) lnP( 2 )  (+-) 

+P( 2) (-+)inP( 2) (-+)   +p( 2) (--)inP< 2) (--) 

=  54(l+x)21n(.)   +   2(5^)(l-x2 )ln'4(l-x2 ) 

+?4(l-x)21n(. ) 

=   2(^)(l+x)2 1n^(l+x)+2(J4)(l-x2 )ln34(l-x2 ) 

+ 2(34)(l-x)21n^(l-x) 

= ''^(l+x)2   +  ^(l-x2 )lnJ^(l+x) 

+^(l-x)2   +  ^(l-x2)lnJ^(l-x) 
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=   2C^(l+x)lnJg(l+x)   +  i^(l-x)ln3^(l-x) ) . 

=   -(Si   +  S2 )/kB    , 

or   S( 2) uncor rel ated    =    Si ( 1 >     +   S2 ( 1 )      . 

The approximate free energy is given by, 

Funcorrelated =-2P 0 Bx-Jx2+2kT [3^( 1+X) lnJ^( 1+x)+^(1-X ) In*^ ( 1-X ) ] 

= F( 1) 1 + F( 1) 2 - Jx2 . ( 2) 

This equation for the free energy can be minimized versis 

changes in x: 

(x-eqn)   0 = SF/Sx  =   -2|JoB -2Jx +2kT[}^lnJ^(l+x) -^lnJ^(l-x)] 

(PoB+Jx)kT = J^ln[(l+x)/(l+x)] = tanh(-l)x , 

or   x = tanh[(PoB)/kBT + (J/kBT)x] 

= tanh(fiMoB -WiJx) i - (3) 

where <i   -   l/ksT. 

When J = 0, the two particles are independent, and hence 

they are uncorrelated; intensive properties are exactly the 

sum as in the N=l case studied above, while extensive 

properties are exactly the sum of the extensive properties 

of the individual particles.  When J > 0, then the two 

particles interact, and there is correlation.  However, 

one can retain the interaction but ignore the correlation. 

by, for example, using Eq. (2) for the free energy. 

The result for x, Eq. (3), is an approximation to the 

correct results; this approximate result for x can be used 

to obtain approximate results for other quantities, 

including U, S, and F.   , 

/ 
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Summary 

The same exact results have been derived for N = 2 

Lenz-Ising model using either the cluster expansion or the 

Gibbs ensemble method.  The Gibbs ensemble can only  be used 

for exact calculations, whereas the cluster expansion can be 

used for either exact or approximate calculations.   We 

found that for the minimum free energy the agreement 

between exact and approximate results was good. 

It is noted that for N = 2 the results for B = 0 are 

quite different than those for B =/ 0, whether the results 

are obtained by exact or approximate methods.  Since many of 

the published calculations for the Lenz-Ising model are for 

the case B = 0 then it will be important to see if this 

tendency for non-zero B-field results to be different than 

zero B-field results continues for larger number of 

particles. 

A System of Three Particles 

We derive the exact results,for a Lenz-Ising model 

with only three particles using the cluster expansion. 

There are several possible configurations for three 

particles; Case I- three particles on a straight line, Case 

II- an equilateral triangle (all J's equal), Case Ill-a 

right triangle.   We begin with Case II, and consider an 

equilateral triangle. 

Microstate: 

The microstate of this system is P = (PiPapa ) where 
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Pi is the microstate of the ith particle. 

Energy: i 

The hamiltonian for this system is, 

H = -yoB(Pl +)J2+JJ3 ) - J(Pl)J2+)-i2)J3+PlJJ3 ) 

where 
Pi, P2, P3 are the 1-particle microstates for 

particle 1,2,3 respectively, 

B is the external magnetic field 

and J is the interaction term for pairs of 

particles. 

Macrostate: 

There are three particles and initially we do not 

treat them as similar.  Later we will let them be the same. 

The microstates are: 

Pi Ui 
1 
1 

-1 
-1 
1 
1 

-1 
-1 

P3 
1 

-1 
1 

-1 
1 

-1 
1 

-1 

This is an exact 
configuration. 

Each macrostate is a probability law for these 8 

microstates.  The macrostate P( 3) is 

P( 3) (M1P2P3 ) = P( 3) 
Pi P2 P3 
1 1 1 s 
1 1 -1 h 
1 -1 1 i 
1 -1 -1 j 

-1 1 1 k 
-1 1 -1 1 
-1 -1 1 m 
-1 -1 -1 n 

Note the following constraints:  g,h,i,j,k,1,m,n > = 0. 
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The quantities g -> n, are just numbers.  We can either 

describe probability functions in terms of numbers such as 

these, or in terms of physical quantities x,y,z.  The 

advantage of working with g -> n is that they do not mean 

anything.  They are just numbers, and only mean the 

probability of being up or the probability of being down. 

For example, the probability for the microstate with all 

three particles being up, is given by "g".  The physical 

quantities, such as "x", mean something - it is the 

probability of spin up minus the probability of spin down: 

i.e. X = p(~) - p( ). 

The macrostate for this three particle system is, 

P( 3) (pi ,JJ2 ,P3 ) 

XI X2 X3       yi 2       yi 3       y2 3       Zl 2 3" 
11111111 
1 1 1-1 1-1-1-1 
1       1-1       1-1       1-1     -1 

= 1/8    4 1        1      -1      -1      -1-1        1        1 
1-1       1       1-1-1       1-1 
1-1       1-1-1       1-1       1 
1-1-1       1       1-1-1       1 

^^1     -1-1-1       1       1       1     -1   ^ 
where x,y,z, have been previously defined.  Note that the 

individual y entries are products of x's (yi2 is the product 

of XI , X2 etc. ) and zi2 3 is the product of xi , x2 , x3 .  For 

example in the second row y2 3 = (x2)(x3) = (1)(-1) = -1, and 

in the third row zi23=(l)(-l)(l)=-l. 

How can we check this arrangement?  Use normalization 

and add up the g,h,...m,n's.  For example, 

g 1/8 X, s  y s  z s 
1/8(8) = 1 
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For the Lenz-Ising model these three particles will be 

similar, and we can add up the x's and the y's.  For 

example, 3x = xi + X2 + X3 and all three spins are pointing 

up.  Then P<3> can be written as. 

P< 3) = 1/8 

+ 3x + 37 + z 
+x -7 -z 
+x -y -z 
-X -y +z 
+x -y -z 
-X -y +z 
-X -y + z 

-3x +3y -z 

Remember that the x and 7 entries above are sums, e.g. 

3y = yi2 + 713 + 723 (the sum for all three entries) and the 

value for z is a product of the three x values. 

Internal Energ7: 

The internal energy is the the average value of the 

hamiltonian, i.e. the expectation value of H, 

U = <H> = - )JoB[<Pi >+<P2>+<P3>] 
- J[<PlP2> + <P2P3> + <PlP3>] 

Recall the N=l case.  We defined the average value or the 

expectation of the spin-state, P, as      • 

X = <P> = J:M-I1P< 1) (M ) 
= (P=+1)(P( n ( + 1)) + (|J=-l)(P(i) (-1) ) 

We recognize S7mmetries in the cr7stal lattice, 

<p 1 > = <p 2 > = OJ 3 > = X 

the average value of P, i.e. the average value of the spin 

state, and 

<PlP2>    =    <)J2P3>    =    <PlP3>=y 
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the average value of the product of M. 

The internal energy can then be written as, 

U = -3JJOBX - 3Jy 

where x is the average value of the magnetization of the 

particle.  It is the probability of spin up minus the . 

probability of spin down: i.e. x=p(")-p( ).  The quantity y 

is the (average value) probability of finding a pair being 

parallel. 

Entropy: 

The entropy for this system is, 

-S/kB = <lnP( 3) > 

-S/kB = [S.all states]P( 3) (PiP2)J3 )lnP< 3) (pi)J2).i3 ) . 

The exact configuration for the microstatees is a 3x8 array 

(see p.54).  We wrote the macrostate in terms of the 

numbers g --> n.  To write this macrostate in the form we 

use with XI ,x2,yi2,z we need to evaluate the numbers g --> n 

as we evaluated the analogous numbers c,d,e,f for P( 2) .  For 

the N=3 case the new quantity is z = <Pil-'2P3> i.e. the 

product of all three microstates.  The quantities x and y 

are the same as in macrostate P( 2) . 

REDUCING 

Is it the case that if I sum P<3) over any one of 

these three particles I get the P( 2) of the other 2 

particles.  We do this in the following way, by extracting 

the behavior of 2 particles from the known behavior of 3 

particles.  We do this by adding up over all possible states 

57 



of the third particle.  This is known as reducing, (reducing 

the marginal probability) 

P(2)(piP2) = :2P3 = -liP( 3> ()JiP2P3 ) 
P( 2 ) ()J 1 p 3 ) = S )J 2 = - 1 1 P( 3 ) (P 1 P 2P 3 ) 
P(2)(P2P3) = SPl=-ll ]P< 3) (P1P2P3 ) 

P( 2)  (P1P2 ) 
11                                    111 11-1 

=   P(2)         1    -1       =   P(3)         -111+ P(3)         1    -1    -1 
-11                                -111 -11-1 
-1    -1                                -1    -1    1 -1    -1    -1 

P3=l P3=-l 
P( 2)  (P1P2 ) 

(1    11) (11    -1) 
=  l/8(l+3x+3y+z) +l/8(l+x-y-z)    —>l/8(2+4x+2y) 

(-1 1 1)       (1 -1 -1) 
l/8(l+x-y-2) +l/8(l-x-y+z)   --> 1/8(2   -2y) 

(-1 1 1)       (-1 1 -1) 
l/8(l+x-y-z) +l/8(l-x-y+z)   --> 1/8(2   -2y) 

(-1-1 1)       (-1-1-1) 
l/8(l-x-y+2) +l/8(l-3x+3y-z) --> 1/8(2 -4x+2y) 

= 34   l+2x+y 
1 - 7  • 
1 - y 
1-2+y 

This is the same P<2) as derived earlier - this time by a 
reduction method. 

Entropy: 
- S/k = i:piP2P3P( 3) lnP( 3) 

= (1/8)(l+3x+3y+z)ln(1/8)(l+3x+3y+z) 
+(3/8)(1+x-y-z)ln(1/8)(1+x-y-z) 
+(3/8)(1-x-y+z)ln(1/8)(1-x-y+z) 
+(l/8)(l-3x+3y-z)ln(l/8)(l-3x+3y-z) 

Energy: 
F = U - TS 

= -3PoBx - 3Jy 
+ (kB T/8)[(l + 3x+3y+2)ln(1/8)(l + 3x+3y+z) 

+3{(1+x-y-z)In(1/8)(1+x-y-z)} 
+3(l-x-y+2)ln(1/8)(1-x-y+z) 
+(l-3x+3y-z)ln(l/8)(l-3x+3y-z)] 

We now MINIMIZE 
0 = SF/Sx  =   -3PoB + (kBT/8) [31n(l/8) (l + 3x+3y+2) 

+31n(l/8)(l+x-y-z) 
-31n(l/8)(1-x-y+z) 
-31n(l/8)(l-3x+3y-s)] 
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0   = SF/Sy  =   -3J   +   (kBT/8)C31n(l/8)(l+3x+37+z) 
-31n(l/8)(l+x-y-z) 
-31n(l/8)(l-x-7+z) 
+31n(l/8)(l-3x+3y-z)] 

0   = i'F/Jz   =   (kBT)[ln(l/8)(l + 3x+37+z) 
-31n(l/8)(l+x-y-z) 
31n(l/8)(l-x-7+z) 
-ln(l/8)(l-3x+3y-z)] 

Suppose B=0, so we can study (x,y,z) with B=0. 

[x eqn]    (l+3x+3y+z)(l+x-y-z) 
   = 1 
(1-3X+37-Z)(1-x-y+z) 

—> (l+3x+3y+z)(l+x-y-z) = (l-3x+3y-z)(1-x-y+z) 

[z eqn]    (l+3x+3y+z)(l-x-y+z)3 
    I 

(l-3x+3y-z)(l+x-y-z)3 

--> (l+3x+3y+z)(l-x-y+z)3 = (l-3x+37-z)(l+x-7-z)3 

From [x], we know 

(l+3x+3y+z)   (1-x-y+z) 

(l-3x+3y-z)   (1+x-y-z) 

From [z], we know 

(l+3x+3y+z)    (l+x-y-z)3 

(l-3x+3y-z)    (l-x-y+z)3 

Hence 
(l-x-y+z)     (l+x-7-z)3 

(I+X-7-Z)     (l-x-7+z)3 

(l-x-7+z)4 = (l+x-7-z)4 
I-X-7+Z = 1+x-y-z 

-x+z = x-z 
[X = z] ^ 

Return to  [x], with (x = z) 

(l+4x+3y)/(l-4x+3y) = (l-y)/(l-y) = 1 
—> l+4x+3y = l-4x+3y 
—> [X = 0] 

59 



Hence,  (B = 0) --> [x = z = 0] 

We continue,   B = 0 with [y eqn] 

3J = 2kBT/8[31n(l/8)(l+3y)-31n(l/8)(l-y)] 

—>       J = (kBT/4)lnC(l+3y)/(l-y)] 

4J/kBT  =   ln[(l + 3y)/(l-y)] a   =  4J/kBT   =   AdJ 

a   =   ln[(l+3y)/(l-y)]     —>   exp(a)   =   (l+3y)/(l-y) 

--> exp(a)   -  exp(a)y  =   l + 3y 
--> exp(o()   -   1   =   y[3   +   exp(o«)]       ■    ■• 

y = [exp(a) - l]/C3+exp(o() ] 

y = Cexp(4^J) - l]/[exp(4riJ) + 3] 
Case I 

We have been examing case II for triangle 

arrangements.  There are two other possibilities for a three 

particle Lenz-Ising lattice models: the triangle and 

straight line.  We now examine case I for 3 particles in a 

straight line. 

For a straight line we have Ji2=J23=J and Ji 3 ~ 0 

Then yi2=y2 3=yi and yi 3 =y2 .  The microstates are as before, 

111 
11-1 
1-11 

P( 3)     =    J      1-1    -1 
-111 
-1 1 -1 
-1 -1 1 
-1    -1    -1 

The  new macrostate is, 

1 + 3x  + 2yi   +  y2 + z 
1 + X  -                y2 - z 
1 + x  - 2yi   +  y2 - z 
1 - x   -                 y2 + z 
1 + X  -                y2 - z 
1 - X  - 2yi   +  y2 + z 
1 - X   -                 y2 + z 
1 - 3x  + 2yi   +  y2 - z 

P( 3)    =   1/8 
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Free  Energy: 
U  =   -3POBX  -   2Jyi 

F  =   -SMoBx   -   2Jyi 
+kBT{(l/8)(l + 3x  + 2yi +  y2   +   z)ln(l/8)( 

+(2/8)(l + X   - y2 -   z)ln(l/8)( 
+(1/8)(1 + X  - 2yi + y2   -   z)ln(l/8)( 
+(2/8)(l - X   - y2 +   z)ln(l/8)( 
+(1/8)(1 - X   - 2yi +  y2   +   z)ln(l/8)( 
+(i/8)(l - 3x + 2yi +  y2   -   z)ln(l/8)( 

Minimize:      Suppose  B   =   0.      Then  x   =   z   =   0. 

0   - SY/Sy\   -   -2J   +   (kBT/8)[21n(l/8)(l + 2yi+y2 ) 
[yi] -21n(l/8)(l-2yi+y2) 

-21n(l/8)(l-2yi+y2) 
+21n(l/8)(l+2yi+y2)] 

0   - a^/Syz   -   (kT/8)[ln(l/8)(l + 2yi+y2) 
-21n(l/8)(l-y2) 
+  ln(l/8)(l-2yi+y2 ) 

[y2] -21n(l/8)(l-y2) 
+   ln(l/8)(l-2yi+y2 ) 
+   ln(l/8)(l+2yi+y2)] 

Solve   [yi ]   and   Cy2]: 

[yi] J=   (kBT/4)ln[(l+2yi+y2)/(l-2yi+y2 )] 

— >     4J/kBT  =   ln[(H-2yi+y2 )/(l-2yi+y2 )] 

[72] 
0   =   ln[(l+2yi+y2 )2 (l-2yi+y2 )2/(l-y2 )4] 

--> 1   =   (l + 2yi+y2 ) (l-2yi+y2 )/(l-y2 )2 

(l+y2+2yi ) (l+y2-2yi )   =   (l-y2)2 

(l+y2 )2    -    4yi2    =    (l-y2 )2 

1   +   2y2   +  y2 2   -4yi2   =   1   -   2y2   +  y2 2 

4y2   =   4yi 2 

[72   =   yi2] 

Substitute   this   result   into   [yi] 

[yi 3 4J/kBT   -   ln[(l + 2yi+yi2 )/(l-2yi+yi2 )] 

2(J/kBT)   =   ln[(l+yi )/(l-yi )] 
Results". 

61 



71 = tanh(i^J) 
72 = [tanh(^J)]2 

For B = 0 and 
X = 0 
z = 0 

straight line       tanh(x) 
case 

= [l-exp(-2x)]/[l+exp(-2x)] 

A System of Four Particles 
This will be a 4-bod7 exact calculation for an equi- 

ever7thing P7ramid.  In these exact calculations it will be 

the first time that we have encountered a three dimensional 

Lenz-Ising model.  For this p7ramid all sides, faces and 

angles are equal. 

We have, 

X = <Pl> = <P2> = <P3> = <P4> 

Which is the average behavior of each particle separatel7. 

7 = <PlP2> = <M1P3> = <Mi)J4> 

= <P2P3> = <JJ2P4> = <JJ3)J4> 

i.e. the average correlation for each pair of particles. 

Z    =    <PlP2y3>    =    <yiP2P4>    =    <P1P3P4> 

=<y2P3M4> 

W   =    <yiiJ2P3)J4> 

Macrostate: 

The behavior of a single particle is given by the 

macrostate P< i) 

P( 1) 0-1 ) -  Vn. 1+x 
1-x 

p< 1) 1 
-1 

The behavior of one particle with another is given by 
the macrostate P( 2 ) 

1+2X+7 
1 - y   =  P( 2) 

1 - 7 
1-2X+7 

P( 2) ()J JJ' ) -   \ 
1 1 
1 -1 

■1 1 
■1 -1 
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P< 2) (p JJ ' ) = p( 2) (pii ).ii2 ) This is an alternative 
way of writing P( 2) by using 
the Morita notation. 

For three particles, the macrostate P( 3) is 

P<3) (M.p' ,p" ) = 1/8 

l+3x+3y+2 
1+x-y-z 
1+x-y-z 
1-x-y+z 
1+x-y-z 
1-x-y+z 
1-x-y+z 
l-3x+3y-z 

=  P< 3) 

111 
1 1-1 
1-1 1 
1-1-1 
-111 
-1 1-1 
-1-1 1 
-1-1-1_ 

microstates 

For four particles, the macrostate P( ^) is 

P< 4) (p,p' ,p" ,p" ' ) 

l+4x+6y+4z+w 
l+2x+0y-2z-w 
l+2x+0y-2z-w 
l+0x-2y+0z+w 
l+2x+0y-22-w 
l+0x-2y+0z+w 
l+0x-2y+0z+w 
l-2x+0y+2z-w 
l+2x+0y-22-w 
l+0x-2y+0z+w 
l+0x-2y+0z+w 
l-2x+0y+22-w 
l+0x-2y+02+w 
l-2x+0y+2z-w 
l-2x+0y+2z-w 
l-4x+6y-4z+w 

= P< 4) 

-1 
-1 
-1 -1 

-1 
-1 -1 
-1 -1 
-1 -1 -1 

-1 
-1 -1 
-1 -1 
-1 -1 -1 
-1 -1 
-1 -1 -1 
-1 -1 -1 
-1 -1 -1 -1 

= 1/16 

microstates of the 
four particles. 16  0  0  0 

Internal Energy: 
U = <H> = -(PoB)(4x) - 
U = - 4J-'oBx - 6Jy 

Entropy: 

(J)(6)(y) 

- S/kB = i:).iP< 4) inP( 4) 
= (l/16)(l+4x+6y+4z+w)ln(l/16)(.) 

+4(l/16)(l + 2x-2z-w)ln(l/16)(. ) 
+6(l/16)(l-2y+w)ln(l/16)(.) 
+4(l/16)(l-2x+2z-w)ln(.) 
+(1/16)(l-4x+6y-4z+w)In(1/16)(.) 
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Free Energy: 
F -   - 4PoBx - 6Jy 

+ (kBT/16)[(l+4x+6y+4z+w)ln(l/16)(.) 
+4(l+2x-2z-w)ln(l/16)(.) 
+6(l-2y+w)ln(l/16)(.) 
+4(l-2x+2z-w)ln(l/16)(.) 
+(l-4x+6y-4z+w)ln(l/16)(.)] 

Minimization: 

[x]        0   = SF/Sx 
-   -4PoB  +   (kBT/16)[41n(l/16)(l+4x+6y+4z+w) 

+81n(l/16)(l+2x-2z-w) 
-81n(l/16)(l-2x+2z-w 
-41n(l/16)(l-4x+6y-4z+w)] 

(l+4x+6y+4z+w)(l+2x-2z-w)2 
— > 4yoB/kBT  =  34ln[       ] 

(l-4x+6y-4z+w)(l-2x+2z-w)2 

[y]     0   = SF/Sy 
-   -6J   +   (kBT/16)[61n(l/16)(l+4x+6y+4z+w) 

-121n(l/16)(l-2y+w) 
+61n(l/16)(l-4x+6y-4z+w)] 

(l+4x+6y+4z+w)(l-4x+6y-4z+w) 
— > '   16J/kBT   =   InC       ] 

(l-2y+w)2 

[z]     0   = SF/Sz 
=   (kBT/16)[41n(l/16)(l+4x+6y+z+w) '        ' 

-81n(l/16)(l+2x-2z-w) 
+81n(l/16)(l-2x+2z-w) 
-41n(l/16)(l-4x+6y-4z+w)] 

(l+4x+6y+4z+w)(l-2x+2z-w)2 
— > 0   =   InC    ] 

(l-4x+6y-4z+w)(l+2x-2z-w)2 

(l+4x+6y+4z+w)(l-2x+2z-w)2 
— > 1   =   

(l-4x+6y-4z+w)(l+2x-2z-w)2 

[w]     0   = ^F/^Sw 
=   (kBT/16)Cln(l/16)(l+4x+6y+4z+w) 

-41n(l/16)(l+2x-2z-w) 
+61n(l/16)(l-2y+w) 
-41n(l/16)(l-2x+2z-w) 
+ln(l/16)(l-4x+6y-4z+w)] 

(l+4x+6y+4z+w)(l-4x+6y-4z+w)(l-2y+w)6 
— > 0   =   ln[       ] 

(l+2x-2z-w)4(l-2x+2z-w)4 
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— > 1 = 
(l+4x+6y+4z+w)(l-4x+6y-4z+w)(l-2y+w)6 

(l+2x-2z-w)4(l-2x+2z-w)4 

Cx] 

Suppose B = 0. 

(l+4x+6y+4z+w)(l+2x-2z-w)2 
-   1 

= 1 

(from [x]) 

(from [z] 

(l-4x+6y-4z+w)(l-2x+2z-w)2 

[z]      (l+4x+6y+4z+w)(l-2x+2z-w)2 

(l-4x+6y-4z+w)(l+2x-2z-w)2 

(l+4x+6y+4z+w)   (l-2x+2z-w)2 

(l-4x+6y-4z+w)   (l+2x-2z-w)2 

(l+2x-2z-w)2 
ditto       =   

(l-2x+2z-w)2 

—>  (l+2x-2z-w) = (l-2x+2z-w) 

--> 4x = 4z 

--> [ X = z ] 

Using this result in the [ x ] equation: 

l+8x+6y+w 
  1 
l-8x+6y+w 

—>  l+8x+6y+w = l-8x+6y+w 

-->    16x = 0 

— >      X = 0 

Hence,  ( B = 0 ) —> ( x = z = 0 ) 

Using X = z = 0, return to the original equation for [x] 

[X] 16PoB/kBT  =   In   [• 

0 
0 

=   Inl 
=  0 

(l+6y+w)(l-w)2 

(l+6y+w)(l-w)2 

since  B=0 

•] 
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i.e., the x-eqn is automaticaly satisfied. 

(l+67+w)2 
[y]       ISAJ = In [ ] 

(l-27+w)2 

1+67+w 
8^J = In ( ) (4) 

l-2y+w 

[z]  is automatically satisfied,  ( 1=1 ) 

[w]  (l+6y+w)2(l-2y+w)6 = (l-w)8 

—>  (l+6y+w)(l-2y+w)3 = (l-w)4 

(1-W)4 
— >       l+6y+w =     (5) 

(l-2y+w)3 

The above two equations (4) and (5) for y and w 

are two simultaneous equations in two unknowns. 

Substitute for l+6y+w in the eqn. for [ y ]. 

(l-w)4 
8(3J = In [ ] 

(l-2y+w)4 

1-w- 
2liJ  -  In ( ) 

l-2y 

--> a = exp(2/J) = (l-w)/(l-2y+w) 

— > « - 2o<y + aw = 1 - w 

— > a - 1 - 2oty + (a + l)w = 0 

— > (« + l)w = 1 - a + 2ay 

--> w = (1 - «)/(! + a) + (2ay)/(l - <^) 

Hence, the Free Energy is for B = 0 

F = -6Jy + (kBT/16)[2(l+6y+w)ln(l/16)(.) 
+ 8(l-w)ln(l/16)(.) 
+ 6(l-2y+w)ln(l/16)(.)] 

with w as above. 
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Write, 

5 = (3F = - er.Jy + (l/8)[(l+67+w)ln(l/16)( . ) 
+4(l-w)ln(l/16)(. ) 
+3(l-27+w)ln(l/16)(.)] 

In the Morita 1-cluster approximation, 

y = < p)j'> » < p X )j ' > = <p><M>=x2=0;B = 0 

z = <pp')J''>a; <)J ><p'><)J''> = x3 

w  =   <  M   p'p''p'''>  is   <)J><p ' XM ' ' ><)J ' ' ' >   =   x4 

In  the  Morita  2-cluster  approximation, 

y  =   < |jp ' >   is  treated  exactly. 

z  =  < pp'p''>   =  < p   ><p'p ' ' >  = xy = 0;     B  = 0 

w = <pp'p''p'''> = <pp ' ><p ''p ' ' ' > = y2 . 

In the Morita 3-cluster approximation, 

7,2 are treated exactly, 

w = < PP'X p''p'''> + < p X p p'p''> 
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CHAPTER IV 

APPLICATION OF THE CLUSTER VARIATIONAL 

METHOD TO THE LENZ-ISING MODEL 

First Order Approximation: Mean Field Theory 
(One Cluster Approximation) 

Internal Energy: 

The internal energy of the Lenz-Ising model is, in 

the first approximation, 

U  =   <H>   =   -PoBEi<Pi>   -  5^JIi j( n. n. ) <)Jil-'J > 

=   -PoBNx  -  }^JNZx2 

where 

X = XI1 and Z = Zi< 2) is the number of nearest 
neighbors. 

y = pair correlation coefficent = x2 in this 1-cluster 
approximation for independent clusters. 

Entropy: 

The entropy is 

S = S'-( 1) = SiS''i< 1) = US" A 1) 

S = -NkBC^(l+x)ln5^(H-x) + J£(l-x)ln^(l-x)] 

Free Energy: 

The Helmholtz free energy is 

F = U - TS 

F = - MoBNx - J^JNZx2 

+ NkBTCJ^(l+x)ln)^(l+x) + J^(l-x)ln^(l-x)] 

68 



It, is convenient t,o work with a dimensionless version of the 

free energy: 

§ = (F/NJ) = - Brx - 5^Zx2 + Tr [J^(l+x)lnJg(l+x) 

+ ^(l-x)ln^(l-x)] (6) 

where  Br = PoB/J  and  Tr = ksT/J  are dimension- 

less versions of the magnetic field and the temperatui'e. 

The values of S given by Eq. (6),as a function of x, 

are shown in Fig. 7 for Tr = 3,6,9,12,24,36.  The critical 

temperature for this first approximation is Tr,ci which is 

the same as the pair coordination number in this 

approximation, (see Eq. (8)). The values selected in this 

figure are multiples of Tr , c.  The external magnetic field 

Br ,is zero in Fig. 7. 

The units used in all figures for S,Br ,and Tr are 

called "reduced" units and are dimensionless.  They are 

given in equation (6). 

Similar results are given in Fig. 8 when the 

external magnetic field, Br , is equal to 10.  This is a very 

strong field and is equal to about 10^ gauss for 

ferromagnetic systems.  The minimum free energy here is 

close to saturation (x=:l), as compared to Fig. 7, where Br 

was zero. 

Minimization: 

The equilibrium state of this system is found by 

differentiating F, or i5 , with respect to x: 
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[x eqn] 
0 = (dS/dx) = - Br - Zx + Tr [J^lnJ^(l+x) 

- J£lnJ^(l-x)] 

Hence: 

Br + Zx = ^Trln[(l+x)/(l-x)] 

Considered as an equation determining x = x(Tr ,Br ), this 

is "transcendental , that is, the methods of algebra cannot 

solve this equation for x(Tr,Br).  However, an explicit 

result is possible for  Tr = Tr(Br,x): 

2(Br + Zx) 
Tr =  (7) 

lnC(l+x)/(l-x)] 

Tables and graphs for Tr = Tr(Br ,x) can be inverted to 

give x = x(Tr ,Br ) . 

The equilibrium free energy in this first 

approximation is calculated by solving Eq. (7) for Tr 

and X when Br is kept at a constant value.  These values are 

used in Eq. (6) to calculate the minimum free energy. 

The results are given in Fig. 9 for several different 

values of Br. ^ 

There is a critical temperature in this case, which • 

we can determine by the conditions that 

B=0 
and 

x«0 & xi>0 

Equation   (7)   becomes 

2Zx 2Zx 
Tr.cl    =       =   ---   =   Z (8) 

lnC(l+x)/(l-x)] 2x 
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There are two branches for x -   x(Tr ,0) when Tr < Tr , c i .  S 

is a minimum on one of these and is a maximum on the othei-. 

We use d2s§/dx2 to determine which is which: 

d25/dx2 = -Z + Tr {J^Cl/(l+x)] + J^Cl/(l-x)]} 

= -Z + ^Tr [l/(l+x) + l/(l-x)] 

See Fig. 7.  We observe that for  Br =0, the branch 

(x = 0) is always a solution of (d5/dx) = 0.  However, 

this solution makes 5(x;Tr,Br=0) a minimum only for 

Tr > Tr.ci = Z.  For Tr < Tr.ci , this branch makes 

S(x;Tr,Br=0) a maximum  (i.e., d2§§/dx2 < 0).  Thermostatic 

equilibrium occurs only when F is a minimum vs. changes in 

X.  So, we select x-branches accordingly. 

Magnetization x is compared in Fig. 10, to Tr for 

various values of the magnetic field Br .  Complete 

saturation is indicated by ±1, with all the spins up or 

down.  A change of phase occurs when Br = 0,and this is 

shown to occur in the figure for Tr.ci = 12, and also 

derived in Eq. (8).  The curve for Br = 0 approaches the x = 

0 line from either side, and almost crosses the line, before 

turning and becoming parallel with this line for values of 

Tr >12. 

The entropy for one particle clusters is presented in 

Fig. 11, as a function of the reduced temperature, for 

various values of the magnetic field.  The entropy in bits 

per particle is calculated by dividing the entropy 

(joules/oK) by ln(2). 
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The specific heat CB is compared in Fig. 12 with Tr 

and different magnetic fields.  These results can be 

compared directly with Fig. 5 from reference (17).  The 

results in the first approximation, using the Morita 

expansion of the free energy, and truncating the series 

after the first term, are the same as the Weiss calculation 

for one particle systems using self-consistent field theory. 

In Fig. 5 (Ch. II) these results are labeled as Bragg - 

Williams, which is a refinement of Weiss's calculations. 

A contour plot of the entropy in "bits" is presented 

in Fig. 13.  This is only the entropy part of the free 

energy in Eq. (6) and all values are positive and above 

the x,y plane as they should be.  This plot of the entropy 

will be referred to in subsequent approximations. 

Second Order Approximation: Bethe-Peirels Theory 
(Two - Cluster Approximation) 

Internal Energy: 

The internal energy of the Lenz-Ising model is, in 

the second approximation, 

U = <H> = - PoBNx - ^JNZyi (9) 

where  x = xi ( i) ,  yp = xi , i + p ( 2) , 

and the interaction energy is represented by  i^JNZyi . 

Compare to U in the first approximation where y = x2. 

Entropy: 

The entropy is 

S = S"( M + S*( 2) 
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Fig. 13. ENTROPY FOR 1-PARTICLE CLUSTERS (UNITS ARE 
BITS) vs. x,y. 
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i.e. for the first two terms of the free energy expansion 

where 

S'-(i> = 2:1=1 NSi *( i> = NS*(i) 

S*(i) = - NkBC5^(l+x)ln( . ) + 5^(l-x)ln( . )] 

S*<2) = i:< i, j> [Si j( 2) -Si(l) -Sj(i>]  ■"' 

S*(2) = 3^NkBZpZp[S( 2)i, i+p - 2S(i)i] 

S* ( 1) is all the entropy for 1-particle clusters and 

S*(2) is all the entropy for 2-partiGle clusters. 

where  p = spacing of a pair of particles 

Zp = pair coordination number 

= number of pairs of spacing p. 

S'(2)    =   -^NkBSpZp{[54(l+2x+yp)ln( . )      .; ''^ 

+2(?4)(l-yp)ln(.)   + ^(l-2x+yp )ln( . ) ] 

-2C5$(l+x)ln(.)   +  3^(l-x)ln(.)]} 

Free  Energy: 

The Helmholtz free energy is 

F = U - TS 

S = F/NJ = (U - TS)/NJ 

S = -Brx - J^Zyi + Tr {3^(l+x)ln( . ) + J^(l-x)ln(.) 

+ '^pZp{C?4(l+2x+yp)ln(.) + 2(^) (1-yp ) ln( . ) 

+ 34(l-2x+yp)ln(.)] 

- 2[5^(l+x)ln(.) + )^(l-x)ln(.)]}} (10) 

The equilibrium state of this system is found by 

differentating S with respect to x and yi: 

[x eqn] 
0 = {S^/Syi) 

0 = -Br + Tr {3^1nJ^(l+x) - ^InJ^d-x) 
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+  ^pZp{[2(54)ln34(l + 2x+yp) 

,:    ■ -   2(M)ln^(l-2x+yp)] 

-   2[3^1nJ^(l+x)   -   Mlii^(l-x)]}. 

1+x                                1+2X+7P                   1+x 
2Br/Tr    =   In +  a^pZpCln    21n ] 

1-x 1-2X+7P 1-X 

[7P   eqn] 
0   =   (.53/^yp ) 

0   =   -  J^Z^pi    +  }^Tr {Zp [?4ln34(l+2x+yp ) 

-}^ln?4(l-yp)   +  34in^ln(l-2x+yp)]} 
Hence: 

(l+2x+yp)(l-2x+yp) 
4Zld'pl    =  TrZplnC ] 

(l-yp)2 

: We must solve these two simultaneous equations. 

Let p>l.  Then the [yp equation] is (for Tr>0) 

[(l+2x+yp)(l-2x+yp)    ■ , 
0 = In    

(l-yp)2] 

since   Zp =/0 for any p.  Hence, 

(l+2x+yp)(l-2x+yp) 
   - I 

(1-7P)2 

(l+2x+yp)(l-2x+yp) = (1-yp)2 

(l+2x)(l-2x) + [(l+2x)+(l-2x)]yp + yp2 z l-2yp+yp2 

4x2+2yp = -2yp 

from which we find ; 

yp = x2 , p>l 

That is, in the "2-cluster approximation", spin-correlation 

extends exactly as far as spin-interaction, which is 

"nearest - neighbor" in this case. 

We can now simplify the [x] equation: 
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1+2X+7P 1+x 
2p>lZp[ln    21n ] 

l-2x+yp 1-x 

l+2x+x2 1+x 
= Ep>iZp[ln    21n ] 

l-2x+x2 1-x 

1+x 1+x 
= Sp>iZp[ln   (---)2   -   21n   ---]   =   0 

1-x 1-x 

Hence,   the  equations  become: 

1+x l+2x+yi 1+x 
[x]        2Br/Tr   =  In  ---  +  5^Zi [in  -------   -21n  ---] 

1-x l-2x+yi 1-x 

(1+2X+71)(l-2x+7i) 
[y] 4/Tr   =  ln[ ] (11) 

(l-yi)2 

These are transendental when regarded as determining x & y 

as functions of Tr & Br . 

Certain results can be extracted from [x] & [yi] : 

1.  When Br =0, inspection shows that (x = 0) is always 

a solution of [x].  We then use [yi ] to determine 

71 = 71 (Tr ,0) : 

(1+yi )2 
4/Tr = In   

(1-71 )2 

1+yi 
implies  2/Tr = In   = 2arctanh yi 

1-yi 

yi = tanh 1/Tr 

See the following derivation for this result. 

1+7   1+7 
[Let a = In   ,   = exp(a) = b , I+7 = b-by , 

1-y  1-y 
b-1   exp(a)-l 

by+y = b-1 , (l+b)y =  b-1 , y = =  , 
b+1   exp(a)+l 
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exp(a/2)-exp(a/2) 
y  -  tanh(a/2) 

exp(a/2)+exp(a/2) 

a = 2arGtanh 7 

See figure 14 and 15 for a plot, of x vs. Tr and y vs. 
Tr . 

An alternative method was actually used to generate 

the results plotted in figure 14 and 15.  This is the 

Simplex method of minimization, and does not use the methods 

of calculus to achieve a minimum value for a funGtion[6].  In 

this approximation it is used as a convenient method to 

obtain the results shown in these figures.  The same results 

would be obtained by solving the minimum equations for [x] 

and [y] given by Eq. (11).  It will be shown in later 

approximations that it is necessary to use the Simplex 

method to mimimize the free energy equations that are 

obtained by truncating the Morita expansion of the free 

energy.  It will be shown in these higher approximations 

that the mimima occur on the boundary of the function, and 

minimization using the methods of calculus will not work in 

these situations.  The Simplex program for this second 

approximation is listed in Appendix E. 

The equilibrium free energy is given in Fig. 16 as a 

function of Tr for various values of Br .  If this result is 

compared with Fig. 9 in the 1-cluster result it will show 

that the equilibrium free energy i-esults are the same in 

both cases, at least to the accuracy of the grid size used 
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to plot these results.  See Appendix G, Table 2 for the 

actual values of the equilibrium free energy. 

2.  There is a critical temperature.  We can deterrmine it 

as we did for the 1-cluster approximation, by setting 

the conditions 

Br = 0 and ( x » 0 & x =/ 0 ) 

[X] 4x 
0 = 2x + J^Zi [ 4x] 

1+yi 

1 
implies  yi =   

(Zi-1) 

as can be shown below. 

0 
1 

=   1   +   Zi C 1] 
1+yi 

1 1          (1+yi )  - 1 yi 

Zi 

-I  
1+yi                1+yi l+yi 

Zi 
yi+1                  1 

yi                yi 

1 1 
Zi   -   1  =  --   ,   yi   =  

yi Zl -1 

That   is,    at   Tr.cH,   yi    =   (Zi-l)-i.   We   use   this   in 

[yi]   to  determine  Tr , c    : 
2 2 2 

Tr.cii    = = =  
1+yi 1 1 Zl-1 + 1 

In        ln[(l+   —)(1 )-n     in  
1-yi Zi-1 Zi-1 Zi-1-1 

2 2 

Zl                                1 
In  In  

Zl    -   2 1   -   2(Zi )-i 
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Expanding this as a series in 1/Zl allows convenient 

comparison with Tr.ci : 

2 
T    II  ~~ — — — — — — — — — — — — _ — — — — — — — 

-2/Zi - ^(2/Zi)2 - l/3(2/Zi)3 +... 

2 

(-2/Zi)[l +5^(2/Zi) +l/3(2/Zi)2 +...] 

Zi 

1 +}^(2/Zi ) +l/3(2/Zi )2 +. . . 

=  Zi{l - [a^(2/Zi) +l/3(2/Zi)2 +...] 

+ [)$(2/Zi ) +. . .]2 + . . .} 

= Zi{l -Jg(2/Zi) +(-1/3 +l/4)(2/Zi)2 +...} 

= Zl{l -1/Zi -(1/3)(1/Zi)2 -...} 

= Zi-1-(1/3)(1/Zi ) +. . . 

= Tr.ci -1 -(1/3)(1/Tr,ci ) +. . . 

= Tr,cl[l -1/Zl -(l/3)(l/(Zl)2 -...] 

As in the "1-cluster" approximation, the critical 

temperature depends on the crystal lattice structure 

including its dimension -- only through Zi = the number of 

nearest neighbors, 12 (See Fig. 1, Ch. I). So, for example, 

the two dimensional hexagonal lattice has the same behavior 

as the three dimensional cubic, in this approximation. 

Since exact calculations show that their behaviors are 

different, we note that a dependence on only Zi is a failing 

of this approximation. 

It is well-know that these sorts of approximations 

become more exact as Zi --> « (i.e., as dimension --> <" ) . 
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and becomes very bad as Zl -->2 (i.e., as dimension -->!). 

We now examine "the st,abili"ty of the solutions : 

>5'2 5 Tr 1 1 1 1 
5xx   =   ---   =   --   [---  +   ---  + SpZp   (    +     

^x2        2        1+x       1-x l+2x+yp      l-2x+yp 

1            1 
 )] 

1+x       1-x 

i'2 5 Tr 1 1 
3ypx    = =   --ZpZp     (  ) 

SypSx       4 l + 2x+yp      l-2x+yp 

6'2g Tr 1 1 
gxyp   = =   --Zp ( - ) 

SxSyp        4 l + 2x+yp     l-2x+yp 

i-25 Tr 1 2 1    ^ 
Sypyp   =   ~~Zp ( + + ) 

6'yp2        8 l + 2x+yp     1-yp        l-2x+yp 

Evaluating these  on the  branch   •• 

Br   =  0 
X  =  0     &    yi   =  tanh  1/Tr 

yp > 1   =  0 
gives: 

£« 2 5 T" ^ 1 

---   =   --   [2   +   Zl ( 2)   +2p>iZp(0)]   =   TrCl   +   Zl ( 1)] 
Sx2       2 1+yi 1+yi 

*25 Tr 
 =  --  Zp(0)   =0 

4" Xi5' yp        4 

iS2g TrZp       l(l+yi)-i   +  l(l-yl)-i P=1 
—     =  -—   [ ] 
Jyp2 4 0 P>1 

Inspection  shows  that  the  branch Br=0     yp=tanh   1/Tr      p=l 
x=0 0 p>l 

is   stable     (   5' '>0   )   for  Tr    >   Tr.cii ,   but   is   unstable 

(Sxx   <   0   )   for  Tr    <   Tr , ci I . 

There is another branch for Br = 0 & x =/ 0 ; 
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it   is   stable   for  Tr<   Tr.cil .      We  now   study   it   . . . 

Equation   [x]   can  be   solved  for  yi    =   7i(x;Br/Tr)    : 

l + 2x+yi 1+x 2Br 1+x 
[In      -   21n  —]   =   ( In  -—)(Zi/2)-i 

l-2x+yi 1-x Tr 1-x 

l+2x+yi 1     2Br 1+x 1+x 
In =  2C--( In  ---)   +   In  ---   ] 

l-2x+yi Zi   Tr 1-x 1-x 

l+2x+yi 2Br 1 1+x 
In =  2[-—   +   (1 )ln  ---]   =   a 

l-2x+yi ZiTr Zi 1-x 

 >   (l+2x+yi)/(l-2x+yi )   =  expa  =  b 

 >   l + 2x+yi   =  b-2bx+byi 

yi-byi   =  b-2bx-l-2x 

(l-b)yi   =   (b-l)-2x(l+b) 

—>   yi    =   -l-2x[(l+b)/(l-b)]   =   -1   +2x[(l+expa)/(-l+expa)] 

yi    =   -1   +2x[(expa+l)/(expa-l)] 

yi   =   -1   +   2x/(tanh{2Br/ZiTr    +   (1-1/Zi ) ln[ (l+x)/( 1-x) ] } )-i 

Suppose  Br    =   0   and   Zi >  ®   .      Then 

yi   =   -1   +  2x/(tanh{ln[(l+x)/(l-x)]})-i 

=   -1  +2x/[4x/(2+2x2)]   =-1   +   1   +  x2   =  x2 

as  we would  expect. 

Suppose  Br   =  0   .      Then 

yi    =   -1   +   2x/(tanh{(l-l/Zi )ln[(l+x)/(l-x)]})-i 

Also   for  X  ~   0,   we  find: 

yi    =   -1   +   2x/tanhC(l-l/Zi )(2x)] 

=   -1   +   2x/(l-l/Zi)2x 

=   -1   +   1/(1-Zi)   =   (-1   +   1/Zi   +   1)/(1   -   1/Zi ) 

=   l/(Zi    -   1)    ,   as   expected. 

These   results   are   plotted   in  Fig.    17,   with  yi   vs   x. 
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We observe a deviation from the 1-cluster result, y = x2, as 

a result of including pair-correlation effects. 

This result for yi = yi(x;Br/Tr) can be used in the 

[yi]-eqn, 

[yi ]             (l+2x+yi )(l-2x+yi ) 
4/Tr = In  

(1-71)2 

to  calculate  Tr as  a function of  x & Br/Tr.     The  results, 

yi   =  yi (x;Br/Tr ) 

Tr    =   Tr (x;Br/Tr ) 

can be inverted to give 

/:• X = x(Tr ,Br ) 

yi = yi (Tr ,Br ) . 

of course,   yp>i = x2 . 

[Results ... in the same pattern as for 1-cluster case.] 

Although the results in this 1- and 2-cluster 

approximation seem to be reasonable e.g. a real critical 

temperature is calculated, it was discovered that already at 

this level of approximation there is a problem with 

truncating the free energy expansion.  The results of this 

difficulty will show up very clearly in the next higher 

cluster, i.e. the 3-cluster approximation, where for 

example, a complex value is obtained for the critical 

temperature.  The following figures will illustrate the 

roots of the problem. 

In Fig. 18 we plot only the internal energy part of 
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Eq. 10 for the free energy, which is the same as given by 

Eq. 9.  The contour plotting method used in these results is 

similar to those discussed in [23],[24], [25].  In Fig. 19 

only the entropy part of the free energy is plotted.  This 

shows some very unphysical behavior where the entropy 

becomes negative for some regions of the x,y plane.  This of 

course is physically impossible, and will be a particular 

problem in the next higher approximations. 

Figures 20 and 21 show the entire free energy given 

by Eq. 10.  It shows two minima, and the illustrates the 

distortion in the free energy surface due to the behavior of 

the entropy. This distortion will become worse with the 

third approximation, and the minima will occur on the 

boundary, where the methods of calculus cannot be used to 

find a minimum.  This 2-cluster approximation has 

illustrated the effect of truncating the free energy 

expansion, although the difficulties resulting from this 

truncation are more evident in the 3-cluster results.  A 

listing of the program HIDDEN6 used in this contour plotting 

is given in Fig. 33 of Appendix E. 

Third Order Approximation: Limited 3-Cluster 

We will restrict ourselves to a "square" lattice and 

include only nearest neighbor and next-nearest neighbor 

pairs and retain only the most compact triplet and ignore 

all other n-clusters (n ;: 2). 

93 



INTERNAL ENERGY 

Fig. 18. INTERNAL ENERGY ONLY FOR 1,2-PARTlCLE 
CLUSTERS vs. x,y WITH 8^=0. 
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Fig. 20. i (INTERNAL ENERGY & ENTROPY) FOR 1,2-PARTICLE 
CLUSTERS vs. x,y FOR 6^=0, Tr=10. ( 1 CLIPPED AT $ > 2) 

96 



DEEPEST MINIMA 

Fig. 21.  i FOR 1,2-PARTICLE CLUSTERS vs. x,y FOR B =0, 
Tr=10. { $ CLIPPED AT 1 ^2) 
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In this restricted view we have the following 

"square" lattices: 

In one dimension, the lattice is linear, and the 

retained pairs are given by p=l and p=2.  The quantities 

p,q,r are the distances between particles.  The retained 

triangle is described by p=l, q=l, r=2.  The coordination 

numbers in 1-dimension are: 

pairs —> Zp;   Z(2>i = 2, Z( 2)2 = 2 

compact triplet > Zpqr; Z( 3 ) 11 2 = 6 . 

In two dimensions, the lattice is square and the 

retained pairs are p=l,and p=2 (or strictely, p='4 2 but we 

have retained p as an "index" of distance).  The retained 

triangle is given by p=l, q=l, r=2( actually r=->r 2 .  The 

coordination numbers are: 

.  pairs- —> Zp ;   Z( 2 ) i = 4 , Z( 2 > 2 = 4 

triplet > Zpqr; Z( 3 ) 11 2 = 24 

In three dimensions the lattice is cubic.  The 

retained clusters are like those in the square case, and the 

coordination numbers are: 

pairs —-> Zp ;   Z( 2) 1 = 6, Z( 2) 2 = 12 

triplet > Zpqr; Z( 3 ) 11 2 -  72 

These results can also be obtained arithmetically, using the 

rule that particles are located at lattice sites according 

to 

r->il,i2...id  = aZ D,D< = i n.i«b''X 

where the b*« are orthogonal unit vectors for "square" 
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lattices, a is the lattice constant, and the niw are 

integers. 

We select the particle "." at r"> = 0->, and vary 

it to locate other particles.  The distance between "." and 

any other particle is |ln|(2) = Ei=iDni2.  We calculate the 

coordination numbers of each particular sort of n-cluster by 

counting the number of In's that generate n-clusters of that 

particular sort. 

In one dimension , D=l, and we have: 

{n=+l, n=-l} <—> smallest 2-cluster 

f <--> Z( 2)1 = 2 

{n=+2, n=-2} <—> next smallest 2-cluster 

<--> Z( 2)1 =2 

n 
1 
2 

-1 
+ 1 
-1 
-2 

n' 
2 
1 

+ 1 
-1 
-2 
-1 

P 
1 
2 
1 
1 
1 
2 

q 
2 
1 
1 
1 
2 
1 

r 
1 
1 
2 
2 
1 
1 

Z< 3 ) 1 1 2 =   6 

In two  dimensions,   D  =   2,   and we  have 

nx 
0 
0 
1 

-1 

1 
1 

-1 
-1 

ny 
1 

-1 
0 
0 

1 
-1 

1 
-1 

1 
1 
1 

■J2 
J2 
^2 
J2 

Z( 2 ) 1    z   4 

Z( 2 ) 2    =   4 

nx        ny 
0 1 
0       -1 

nx 
1 

-1 

ny 
0 
0 

P= 
ln|| 

t 

q= r- 
In'l 1In-ln' 

1   ' '      ^2 
1 J 
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We continue in a similar way as in the first two 

approximations. 

Internal Energy: 

The internal energy is, 

U = <H> = -PoBNx - J^JNZiyi 

Entropy: 

The entropy is, 

S = S* (1 > + S* < 2 ) ■ + S* ( 3 > ■ 

(where the prime notation reminds us that we are restricting 

our attention to n.n. pairs and the n.n.n. pairs and only to 

triangles for the triplets.) 

The intrinsic entropy for 1-clusters is, 

S"(i) =i:iS*(i)i =NS'(i) = -Nkb{J^(l±x)ln. } 

(The notation "In." means that, the quantity that 

immediately precedes the function "In" is repeated as its 

argument.) 

For pairs the intrinsic entropy is, 

S*( 2) ' = S"( 2) . , .+1 + S"( 2) . , .+2 

= -NkB{Zi{[(1/4)(l+2x+yi)ln.+etc]-2[]} 

+ Z2{[(l/4)(l+2x+y2)ln.+etc]-2[]} } 

For triangles the intrinsic entropy is, 

S*(3)' = S-(3).,.+1,.+2 

= -NkBZii2{[(l/8) (l+3x+2yi+y2+zii2 )ln. +etc]-etc } 

(Note: In this description the "." used as a subscript, 

as in S". ,is meant to replace the i usually used to 

represent a single particle.  Also in the pair notation the 
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i,j would be replaced by .,.+1 and n.n.n. pairs are written 

as .,.+2.  For triangles we use .,.+l,.+2 instead of the 

usual i,j,k.) ■   ' 

Free Energy: 

The Helmholtz free energy for this limited 3-cluster 

approximation is 

5   =   (F/NJ)   =   [-Brx-l/2ZiYi ]   +  Tr {[5i(l+x) In.   +   (V2(l-x)ln.] 

+^p = l, 2Zp{[34(l + 2x+yp )ln.+2*'4(l-yp )In. 

+)4(l-2x+yp )ln. ]   -2[J^( 1+x) In.+J'3(l-x) In . ] } 

+ (l/6)Zn2{C(l/8)(l + 3x+2yi+y2+zii2 ) In. 

+2*(1/8)(l+x-y2-zii 2)ln. 

+ (1/8) (l-x-2yi+y2+2i 12 )ln. 

+ (1/8)(l+x-2yi+y2-2ii2)ln. 

- +2*(l/8)(l-x-y2+zii2)ln. 

+ (1/8) (l-3x+2yi+y2-zii2 )ln. ] 

-2[34(l+2x+yi )ln.+2*J^(l-yi )ln.+34(l-2x+yi )ln. ] 

-   [54(l+2x+y2 )ln.+2*)^(l-y2 )ln.+54( l-2x+y2 )ln. ] 

+ 3[^(l+x)ln.+J^(l-x)]}} 
Minimization". 

We will minimize the free energy using calculus 

minima and also with the Simplex algorithm, reference (6). 

The equilibrium state of this system is determined by 

finding the minimum values for x,yi,y2,zii2 which are 

obtained by calculating the derivative of S first wrp. to x, 

and then yi ,etc. , setting the eqns. equal to zero, and 

solving for x, yi , y2 , zi i 2 . 

Calculating the derivative of S wrp. x, and setting 
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the result equal to zero, is called the [x] eqn. 

[x] 0   =   {6-§/Sx) - 

1+x ' 
=   -Br    +   Tr {^In  

1-x 

l+2x+yp 1+x 
+)^(Zp = i, 2 )Zp['^ln    In   ---   ] 

l-2x+yp 1-x 

1 + 3X+271+72+2112 1+X-72-Z112 
+(l/6)Zii2   [(3/8)ln     +   (2/8)ln    

1-3X+271+72-2112 I-X-72+ZI12 

(l+x-271+72-2112 )                l + 2x+yi 
(l/8)ln    In  

(l-x-2yi+72+2112 ) 1-2X+71 

1+2X+72 1+x 
-  3^1n +   (3/2)ln  —]} 

1-2X+72 1-x 

1+x 1+2X+7P 1+x 
2*Br/Tr   =   In  -—  +  J^(Sp = i, 2 )ZpCln    21n  ---] 

1-x 1-2X+7P 1-x 

Z112             1 + 3X+271+72+2112                     l+x-72-2112 
+  —-   [31n      +  21n  

24 .    1-3X+271+72-2112 l-x-72+2112 

l+x-271+72-2112         •          1+2X+71 
+   In      -   81n  

l-x-271+72+2112 1-2X+71 

1+2X+72 1+x 
-  41n      +  121n  ---] 

1-2X+72 1-x 

[7I] 

0   =   {S^/Syi ) 

=   -4Zi   +  Tr {Zl [ln?4(l+2x+7i )   -   21n^(l-7i)   +   ln3^( l-2x+7i ) ] 

+   2(4/6)Zli2{C(2/8)ln(l/8)(l + 3x+27i+72+zii2 ) 

- 2(1/8)1x1(1/8) (l-x-271+72+2112 ) 

- 2(l/8)ln(l/8)(l+x-27i+72-zii2 ) 

+   (2/8)ln(l/8)(1-3X+271+72-2112)] 
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-   Hilnii{l + 2x+yi)   -   21n?4(l-yi)   +   ln54( l-2x+yi ) ]}} 

(l + 2x+yi ) (l-2x+yi ) 
4/Tr  =   In    

(1-71)2 

Z112             (1 + 3X+271+72+211 2 ) (1-3X+271+y2-zi 1 2 ) 
+ [In  

3Zi (l-x-271 +72 +Z11 2 ) (l+x-271 +72 -zi 1 2 ) 

(1 + 2X+71 )(1-2X+71 ) 
-   21n ] 

(1-72)2 

[72 ] 
0   =   iSi/Sy2) 

=  Tr{J^Z2   [?4ln ^(l+2x+72 )-2*5iln?4(l-72)+3^1n34(l-2x+72 )] 

+ (1/6)Zi 1 2 C(1/8)ln(1/8)(1 + 3X+271 +72 +zi 1 2) 

-2(l/8)ln(l/8)(l+x-72-zii2) 

+(1/8)ln(1/8)(l-x-271+72+ZII2) 

+ (l/8)ln(l/8)(l+x-27i+72-zii2 ) 

-2(l/8)ln(l/8)(l-x-72+zii2) 

+(l/8)ln(l/8)(l-3x+27i+72-zii2)] 

-C54ln?4(l+2x+72 )-2^1n34(l-72 )+HlnHil-2x+y2 )]} 

(1+2X+72)(1-2X+72) 
— >     0=(}^)(?4)Z2ln  

(1-72)2 

Zii2             (1 + 3X+271 +72+ZI12 ) (l-x-271 +72+ZI1 2 ) 
+ [In  

6*8 (I+X-72-ZI12 )2 (I-X-72+ZI1 2 )2 

(l+x-271+72-zi 1 2 ) (1-3X+271+72-zi 1 2 ) 
:jt       _  

( l+X-72-ZI 1 2 )2 ( l-x-72+Z1 1 2 )2 

(1+2X+72)(1-2X+72) 
-21n         ] 

(1-72)2 

(1+2X+72)(1-2X+72) 
-->   0   =   In       

(1-72)2 
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Zl 1 2              (l + 3x+2yi +72 +211 2 ) (1-3X+271 +72 -zi 1 2 ) 
+ [In  

6Z2 (l+X-72-2112 )2 (I-X-72+ZII2 )2 

( l-X-271 +72 +Z1 1 2 ) ( l+X-271 +72 -Zl 1 2 ) 
*  

( l+X-72-Zl 1 2 )2 ( l-X-72+Z1 1 2 )2 

(1+2X+72)(1-2X+72) 
-21n         ] 

(1-72)2 

[2112 ] 
0=   {S^/Szii2) 

=  Tr{(1/6)Zii2[(1/8)ln(1/8)(1+3X+271+72+Z11 2) 

-2(l/8)ln(l/8)(l+x-y2-zii2) 

+ (l/8)ln(l/8)(l-x-27i+y2+zii2 ) 

-(1/8)ln(1/8)(l+x-271+72-Zl 1 2) 

+2(l/8)ln(l/8)(l-x-y2+zii2) 

-(1/8)ln(1/8)(1-3X+271 +72-zi 1 2]} 

(l + 3x+2yi+72+zii2 ) (l-x-271 +72+ZI12 ) (I-X-72+ZI12 )2 
I-  

(1-3X+271+72-2112 ) (l+x-2yi+72-2112 ) (l+x-72-2112 )2 

We begin the stud7 of these hy  supposing that Br = 0. 

By inspection, we find that ( x=0,2ii2=0 ) then satisf7 [x], 

[2112] identicall7- 

1+7P 
[x]  0 = Inl + }^(Ep = i, 2 )ZpCln -21nl] 

1+7P 

Z112 1 + 271+72 1-72 1-271+72 
+ [31n +21n In  

24 1 + 271+72 1-72 1-271+72 

1+71 1+72 
-81n  -41n +61nl] 

1+71 1+72 

[2112] 
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(l + 2yi +72 ) (l-2yi +72 ) (l-yz )2 
    1 
(1 + 271+72)(l-2yi+72)(1-72)2 

Equations   [71]   &   [72]   become: 

[71]     4 1+71 Z112 (1 + 271+72) 1+71 
- =   21n +      C21n      -41n ] 
Tr 1-71 3Zi (1-271+72) 1-71 

2 1+71        Zi 12 1+271+72 1+71 
- =   In + [In -21n ] 
Tr 1-71        3Zi 1-271+72 1-71 

[72 ] 
1+72 Z112 (1+271+72 )(1-271+72 )                1+72 

0 = 21n + [21n       -41n ] 
1-72 6Z2 (1-72)2                                 1-72 

1+72        Z112 (1 + 271+72 )(1-271+72 ) 1+72 
0 = ln + [In 21n ] 

1-72        6Z2 (1-72)2 1-72 

We will  now  solve   [72]   for  71    =   yi (72 ; Zi 1 2/Z2 ) ,   and 

use  the  result  in   [71]   to  obtain Tr   =  Tr (72 ; Zi 1 2/Zi ; and 

Z112/Z2 ) .    . 

[72] '        . 

6Z2 1+72 (l+2yi+y2 ) (l-2yi+y2 ) l+y2 
---   [-In ]   =   In    2in  
Zll2 1-72 (1-72)2 l-y2 

(l + 2yi+y2 ) (l-2yi+y2 ) 6Z2 l+y2 
In =   [2 ][ln ] 

(1-72 )2 Z112 l-y2 

(l+2yi+72 ) (I-271+72 ) 6Z2 1+72 
 3   exp   {[2 ][ln ]}   =  b 

(l-y2)2 Z112 l-y2 

(l + 2yi+y2 ) (l-2yi+y2 )   =   (l-y2)2b . 

(l+2yi )(l-2yi )   +   [ (I + 271 ) + (I-271 ) ]72   +  722   =  b(l-72)2 

1   -   4712   +   272   +722   =b( 1-272   +722) 

-4712   =   [l-272+72 2]b   -   1   -   272   -   722 
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yi2   =  1^[1   +   2y2   +  722   -  b   +2by2   -b72 2] 

yi2   =  34[(l-b)   +  2(l+b)y2   +   (l-b)y22] 

yi2   = i4Cl-b][l+y22+2[(l+b)/(l-b)]y2] 

We  have  now  derived the   equations   for b   and  yi2. 

To  evaluate  b  and yi2   we  have  the  following  calculations 

in one   and  two  dimensions. 

In One Dimension Z2   =   2  and  Zi 12   =   6.     Hence 

b  =  exp{[2-6*2/6]ln[(l+y2)/(l-y2)]} 

=   exp{[  0   ] 

=   1 and 

yi2   =   (l/4)[   0   +   2*2y2   +  0*y2 2] 

yi2   =  y2 

Summarizing: b = 1 

y2   =  yi2 

In Two  Dimensions Z2   =   12   and   Zi 12   =   24.      Hence 

b  =  exp{[2-6*12/24]lnC(l+y2)/(l-y2)   } 

=  exp{[2-3]lnC(l+y2)/(l-y2)] 

=  exp{-lnC(l+y2)/(l-y2)]} ;; 

=   C(l+y2)/(l-y2)](-l) 

=   [(l-y2)/(l+y2)] 

and the  relation between  yi   and y2   is, 

yi2   =  ?$[(l-b)   +   (l-b)y22   +2(l+b)y2   ] 

■      = 54{(i-[(l-y2)/(l+y2)])   +2(l+[(l-y2)/(l+y2)])y2 

+(l-[(l-72)/(l+y2)])   } 

=  m   (2y2)/(l+y2)   +  2(2/(l+y2 ) )y2 

+ (2y2/(l+y2 ) )y2 2   } 
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=   5^[2y2 7(1+72)] [3+722] 

=   >'2[72/( 1+72)] [3+722] 

Summarizing:  b = [(1-72)7(1+72)] 

71 2 = J^[72 7(1+72)] [3+722] 

We use these results in [71 ] to obtain Tr . 

[yi] 

2                 1+yi       Z112            l+2yi+72 1+71 
—     =   In + [In 21n   ---] 
Tr 1-71 3Zl 1-271+72 1-71 

We  derived the   result  for  712   as: 

712   =  ?4{(l-b)+2(l+b)72 + (l-b)722} 

6Z2    1+72 
where   b = exp{[2-  ]In  } (from p.105) 

Zi 1 2  1-72 

Using these  equations  we   found   in  ONE  dimension  that 

72=71 2 . 

In ONE  dimension,   if  we  use  this   result   in     [71 ]   above 

and  recall  that   Zl 12   -   6,Zi   =   2  then we  derive  71   as: 

2 1+71        6 1+271+712 1+71 
- =   In +   -   [In    21n ] 
Tr 1-71        6 1-271+712 1-71 

1+71 1+71 1+71 
- In +  21n    21n  

1-71 1-71 1-71 

1+71 
- In +   0 

1-71 

— > 27Tr    =   ln[(l+7i )7(l-7i )   =   a 

-->        (1+71)7(1-71)   -   exp(a)   =   b 

-'> 1+71    =  b   -  b7i 

-->        (l+b)7i    =  b   -   1 
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b-1        exp(a)-l 

b+1        exp(a)+l 

exp(a/2)-exp(-a/2) 
— > =  

exp(a/2)+exp(-a/2) 

— > r   tanh(a/2) 

--> =   tanh(l/Tr) 

We  know that  this   is  the   same   result   as   in the 

2-cluster  case. 

yl2   =   (1/4)[-()272   +   2(2)72   -(    )722] 

=   (l/4)[4(l+l/2(   )72   -(   )722] 

since   (    )722   =   0 

712   =   (l/4)[4(l+l/2(    )72] 

=   [l + l/2(2-6Z2/Zii2)]y2 

=   [2   -3Z2/Zii2]72   =   [2-(3*2)/6]72 

In one  dimension,   we  found     712   =72,   and we   find   it   again 

from this   result. 

Hence,    in  one   dimension,   71    =   tanh(l/Tr)    ...same   as   in  the 

2-cluster  approximation. 

Summar7 

For  an7  dimension,   we   find,   for  Br=0 

6Z2     1+72 
b = exp{C2 ][ln ]} 

Z112     1-72 

1+b 
71 = J^{(l-b)[l + 2(---)72+722]} 

1-b 

2 1+71 Z112 1 + 271+72 1+71 
-   =   In + [In    21n ] 
Tr 1-71        3Zi 1-271+72 1-71 

x  =   zi 12   =   0 
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The existence of negative values for the entropy in 

the truncated free energy was illustrated in the previous 

section, see Fig. 19.  The effect on the free energy surface 

was shown in Figs. 20 and 21.  In the third approximation 

these negative values of the entropy have severe effects on 

the derived results.  If a critical temperature is derived 

from these minimized equations it will have a complex value 

[23].  To examine the entropy values resulting from 

truncating the expansion after the third term the values are 

shown in Figs. 22 and 23 for two different values of z, the 

triple correlation moment .  In Fig. 22 the value of the 

entropy values are given as a function of magnetization, x, 

and the pair correlation, y, for a constant value of z = 

0.2.  Similar results are given in Fig. 23 for z = 0.  The 

entropy values shown in the upper half of both figures are 

negative in some cases and greater than unity for some 

values.  Neither of these kind numerical are physically 

realistic: the entropy must be i1 and can never be negative 

for this system.  The entropy values where obtained with the 

program GRID 6 and the listing is given in Appendix E. 

An attempt at reducing the magnitude of these non- 

physical results is shown in the lower half of figures 22 

and 23.  This reduction is suggested by numerical techniques 

which only use \  of the value of the last term in a series 

in order to speed-up convergence.  We have used only ^ of 
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3 (TRIPLE CORRELATION MOMENT) 
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the entropy contributor! from the three particle cluster (the 

last custer term in the truncated series) and re-calculated 

the total entropy for the 1,2,3-particle clusters.  The 

results do show an improvement in the entropy values'- some 

become less negative and all are 11.  In Fig. 23 the entropy 

value is unity for z=y=x=0, as it should be for both 

calculations.     ^ - 

The equilibrium free energy is plotted in Fig. 24 

for the third approximation as a function of Tr .   The 

values were determined by the Simplex minimization 

algorithm.  A listing of the Simplex program is give in 

Appendix E, and the essential steps are given in reference 

[6]. 

As mentioned in the previous section (4.1) the 

minimum occur on the boundary and the calculus minimasation 

will not work.  We have used the Simplex algorithm to 

minimize the truncated free energy equation.  This 

minimization technique is not a calculus type minimization 

method and can be used to obtain minima which are located on 

the boundary. 

In Fig. 24 the equilibrium values are denoted by "X" 

for S when no correction is made to the entropy contribution 

of the third term in the truncated free energy.  These 

values for 5 are very different than the solid curves which 

are the equilibrium values for the free energy that were 
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obtained in the earlier approximations and re-plotted in 

Fig. 24.  It was noted previously that the numerical value 

of 3eq. would not change very much for the higher order 

approximations as compared to the approximations for 1,2- 

particle clusters.  To evaluate the effect of only using J-i 

of the entropy contribution of the third term, as was done 

in Figs. 22 and 23, the values of S were re-calculated using 

only ^  of the third term.  These results are denoted by the 

large black dots, and show good agreement with the earlier 

results. 

Fourth Order Approximation:(4-Cluster) 

The following is a list of the principal steps in this 

derivation. 

The Helmholtz Free Energy is given as  F = U - TS. 

1. Calculate U. 

2. Calculate S.    " indicates intrinsic entropy. 

S = S"(i) + S*(2) + S"(3) + S-(4) (11) 

S*<1) is the same as in the 1-c approximation. 
S*(2)         " .2-c 
S*(3) •' 3-c 
S*(4) = S(4) - 4S(3) + 6S(2) - 4S(i) 

S( 1 ) ,S(2) ,S(3> are known from the earlier 

approximations and are given as Rl,R2,R3, respectively in 

the program SIM4,see the listing in Appendix E. 

S( 4) is determined from P( 4) ()J ' . . .P ' ' ' ) which is the 

probability distribution for only 4 particles.  (See 

section 3.3).  The equations for this distribution are 
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denoted by R4 in SIM4, (see Appendix E).  (Note that "R" is 

used to represent entropy in SIM4.) The total entropy, R, is 

given as follows / 

R = Rl + [Z1/2](R2-2R1) + [Zlll/6](R3-3R2+3R1) 

+ [Z111111/24](R4-4R3+6R2-4R1) (12) 

Zl is the pair coordination number 
Zlll is the triplet coordination number 
Zllllll is the 4-particle coordination number 

Zl.Zlll are known from the previous approximations.  Zllllll 

is the only new coordination number. 

3. The Helmholtz free energy is given as, 

5 = -Brx - J^Ziy + Tr (R) (13) 

5, Br and Tr are the reduced free energy, magnetic field 

and temperature respectively. 

4. Minimize the free energy, and obtain the minimum value of 

9.  The probabililty distribution associated with this 

minimum value of S is the equilibrium macrostate for this 

system. From this macrostate all quantities of 

thermodynamic interest can be derived by the standard 

formulas. 

The following is a description of the 4-cluster 

approximation results for the FCC lattice. 

Internal Energy: 

D = < Hamiltonian > = - PoBNx - ^JNZ( i) <l-ii|J 2 > 

These quantities have been previously defined and the 

definitions are repeated here. 

JJo is the magnetic moment of each particle 
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B is the external magnetic field 

■ N is the number of particles in the system 

X is the magnetization per particle 

The interaction energy is given by the second term. 

J is the exchange integral 

Zl is the pair coordination number 

Pi is the microstate of one of the particles in the 

pair and M2 is the microstate of the other 

particle.  This pair of particles are nearest 

neighbors (n.n.) and the average value of the 

product of the two microstates is called yi, the 

pair correlation coefficient. 

U can be written as, 

U =■ N[-MoBx - J^JZiyi ] 

Entropy: 

The entropy for this 4-cluster approximation is given 

by, 

S = S*(i) + S*(2) + S*(3) + S*<4> 

The intrinsic entropy for each cluster is represented by S 

with a superscript " "   ", and each cluster approximation by 

a number, i.e. S'(2) is the intrinsic entropy for the second 

approximation.  The intrinsic entropy for each approximation 

is written as follows. 

S''<1) = S( 1) for the first approximation, since there 

is only one particle in each cluster and it is not necessary 

to correct for the prescence of any other clusters.  S( i-) is 
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given by the entropy for the one-particle exact calculation, 

see section 3.0. 

S*(n = S(i) = -kB[J^(l+x)ln5^(l+x) + J^(l-x)ln)^(l-x)]  (14) 

The intrinsic entropy for the 2-cluster is written as, 

S-(2> = Ei, j [S( 2)i, j -S<i>i - S( 1) j ] 

S*(2) = ;^NZpZp[S(2)i,i+p - 2S(i)i] 

S(2)i,i+p is the entropy derived in the exact calculation 

for two particles, see section 3.1, and is given as, 

S<2) = -kB[l4(l+2x+yp )ln( . ) + )^(l-yp)ln(.) + J^C l-2x+yp ) Ini . ) ] 
a5) 

S<1) is the same as above.  Then S~(2) is given as, 

S*(2> = -)^NkBrpZp{[34(l+2x+yp )ln( . ) + ^(l-yp)ln(.) 

+ J4(l-2x+yp )ln( . ) ] - 2[J$(l+x) ln( . ) + J-2( 1-x) in( . i ] } . 

The intrinsic entropy for the 3-cluster is written as 

S*(3)' = S(3) - 2S(2)p = i - S( 2) p = 2 + 3S( 1) 

S<3>    is   the  entropy  derived   in  the  exact  calculation   for 

three  particles,   see   section  3.2,   and   is   given  as, 

S(3)    =   -kB[(l/8)(l+3x+2yi+y2+zii2 )ln( . ) 

+   2(l/8)(l+x-y2-2ii2)ln(.) 

+   (l/8)(l-x-2yi+y2+zii2 )ln( . )   +   (1/8 ) (l+x-2yi+y2-zi i 2 ) ln( . ) 

+2(l/8)(l-x-y2+zii2)ln(.)   +   (1/8)(l-3x+2yi+y2-zii2)ln(.)] 

(16) 

S(2) and S( 1) are the same as given above.  The intrinsic 

S* ( 3) is given in the previous section. 

The intrinsic entropy for the 4-cluster is 

S*(4) = 3(4) - 4S(3) + 6S(2) - 4S(i) 

All terms in this equation have been previously defined. 
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S<4), the exact distribution for only 4 particles, is given 

in section 3.3.  S( i) , S( 2) , S( 3) are given by Eqs . 

(14),(15),(16) respectively. 

The total entropy for the first, second, third and 

fourth cluster is given by Eqs. (11),(12).  In SIM4 the 

total entropy for these four clusters is denoted by R. 

Free Energy: ' 

The free energy is given by Eq. (13) and is 

denoted by line 190 in SIM4 (Appendix E, Fig. 32). 

Minimization: 

The minimization of the free energy is calculated 

with SIM4 and the results presented in Fig. 26. 

Discussion: 

The entropy values for the first four clusters are 

shovm in Fig. 25 in a similar way as the entropy values are 

given in Figs. 22 and 23 for the third order approximation. 

(These values were calculated with the program GRID6 that is 

listed in Appendix E as Fig. 34).  The entropy as a function 

of x and y is given in Fig. 25 for z = w :: 0 in the upper 

half of the figure, and for z = w = 0.2 in the lower half. 

In this case however it is not necessary to adjust these 

entropy values as was done in the third order approximation. 

The values are plausible and physically acceptable - none 

are >1 and none are negative.  Note also that for x = y = z 

= w = 0 the entropy has a maximum value of unity as it should. 

The equilibrium free energy is given in Fig. 26 as a 
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function of the reduced temperature Tr and is denoted by 

"x".  The reduced magnetic field is zero.  The solid curve 

is the equilibrium free denergy for a 1-particle clusters 

and as previously noted these equilibrium vaues will not 

change very much with higher order approximations.  The 

equilibrium values are also given in Table 1, Appendix G. 

For any value of Tr , the minimization program SIM4 may 

calculate values for equilibrium 5 which are more negative 

than those plotted in Fig. 26 and represented by "x".  The 

correlation values x,y,z,w for these more negative i5 values 

will be less acceptable than the correlation values 

associated with the less negative value of 5.  Table 2 in 

Appendix G gives values of x,y,z,w for Tr =   4,8,10,16.  The 

values of S plotted in Fig. 26 also agree very closely with 

the equilibrium 5 values for the lower order approximations. 

The reason that other values are calculated for S is that 

these other equilibrium values are associated with the 

spurious minimum that are located on the boundary.  These 

values of S are too low and the values of x,y,z,w associated 

with them are physically unacceptable.  The entropy 

calculated for these 5 values will be negative.  These were 

the criteria used in selecting the § values that are plotted 

in Fig. 26. 
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APPENDIX A 

COORDINATION NUMBERS 

Linear Lattice: Isingl.BAS 

P Z( 2)p 

1 2 
2 2 
3 2 
4 2 1 

5 2 

P Q R Z( 3)pqr :Ising2.BAS 
1 1 2 6 
1 2 3 12 
1 3 4 12 

See Fig.27 

Square Lattice: 

Line*^ Z( 2) p P 
0 4 1 
1 4 1. 41421356 

' ■ f. 2 
3 
4 
5 
6 
7 

4 
8 
4 
4 
8 
8 

2 
2. 
2. 
3 
3. 
3. 

23606797 
82842712 

16227766 
.60555127 

8 4 4 

P 
1 
1 

9 
10 
11 
12 

Q 
1 
1 

8 
4 
8 

L2 

R 
^2 
2 

4. 
4. 
4. 
5 

.12310562 
24264068 
.47213595 

Z( 3>pqr 
24 
12 

1 ■J2 ^r5 48 
1 2 J5 48 
^2 ) ■S2 2 24 
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Cubic Lattice: 

Linetf Z( 2)p P ■xT 

0 6 1 1 
1 12 1.41421356 2 
2 8 1.7320508 3 
3 6 2 4 
4 24 2.23606797 5 
5 24 2.44948974 6 
6 12 2.82842712 8 
7 30 3 9 
8 24 3.16227766 10 
9 24 3.31662479 
10 8 3.46410161 
11 24 3.60555127 
12 48 3.74165738 
13 6 4 
14 48 4.12310562 
15 36 4.24264068 
16 24 4.35889894 
17 24 4.47213595 
18 48 4.58257569 
19 24 4.69041576 
20 24 4.89897948 

P Q R Z( 3) pqr 
1 1 -12 72 
1 1 2 18 
1 ^2 43 144 . 
J2 J2 -12 48 

"4-cube" Lattice: 

Line*   Z( 2 ) p 
0 8 1 
1 24 1.41421356 
2 32 1.7320508 
3 24 2 
4 4i 2.23606797 
i m 2.44948974 
6 m 2.64575131 
7 24 2.82842712 
8 104 3 
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"5-Gube" Latt ice: 

Linert Z( 2)p P 
0 10 1 
1 40 1.41421 
2 80 1.73205 
3 90 2 
4 112 2.23607 
5 240 2.44949 
6 320 2.64575 
7 200 2.82843 
8 250 3 
9 - — 
10 - "*!• 

/ 

"6-cube" Lattice: 

Linetf Z< 2)p P 
0 12 1 
1 60 1.41421 
2 160 1.73205 
3 252 2 
4 312 2.23607 
B 544 2.44949 
@ 960 2.64575 
f 1020 2.82843 
8 876 3 

Some General Results for "n-cube" lattices 

smallest clusters 
D 2i Zll2 Z112/ZI 
1 2 6 3 
2 4 24 6 
3 6 72 12 
4 8 
5 10 

12 
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APPENDIX B 

ISINGl PROGRAM 

Regarding the program ISINGl.BAS for computing 

Z(2)p--pair coordination numbers, we list the following 

rules. (See Fig. 27) " . 

1. Put one particle at the origin of the lattice.  Put 

the other particle at the location specified by the lattice 

numbers N1,N2,...,ND = |N (where D = dimension of the 

lattice). 

Since the lattice is generated by the basis vectors 

Bl->, B2-> ,...,BD-> = lB-> by the rule 

r- > = LI Nl Bl - > , 

then the location (of the particle) specified by |N has 

cartesian coordinates 

■   r = SiNi (Bi )-> j 

where (Bi )->j are the cartesian coordinates of |B"> . 

This is the location rule. 

The "n-cube" lattices are: 

.n n - cube 
1 linear lattice 
2 square lattice 
3 cubic lattice 
4 hyper - cube lattice 
5 who knows what it is called? 
6 etc. 
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These lattices are generated by the "standard" 

orthonormal basis, whose cartesian components are 

(Bi )j-> = Sji . 

The distance rule is given by the following. The 

distance between the particle at the origin, and the one 

specified by |N is 

P = 1 |r->- 0-> 1 I = 1 lr-> 1 I 
= Sj [SiNi (Bi-> )j]2 

For "n-cube" lattices, this is 

P =  ^[Sj (SiNii'ji )2] 
=  ^C2jNj2]. 

2. Step over all values of IN, 

reject P if  (a) P = 0 (we have accidentally put the 

roving particle at the. origin) 

(b) P > Pmax (we have an jN that puts the 

roving particle too far from the 

origin) . 

3. We keep a list, P(I), of distinct values of P, always 

arranged in ascending order.  We keep a second list, C(I), 

of the number of times the distance P(I) has been obtained. 

These lists are initialized to  { C(I) = 0     } 

{ P(I) = Pmax+1 } . 

Upon moving the roving particle to each new location, 

and computing P, we scan the list P(I) starting from the 

smallest value (at the top).  For each value of I (1=0 to 

Imax), we compare P with P(I): 
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(a) if P -   P(I), then we increment the counter G(I), 

C(I)+1, and then quit the comparison. 

(b) if P < P(I), then we recognize that we have 

encountered a new value of P, which we must insert into the 

list.  So we pause to open up a space in the list, hy  moving 

all values from the current value P(I) to the top of the 

list P(Imax) down by one.  And we also move the counters. 

(Of course, P(Imax) and (Imax) fall off the end of the 

lists.) 

For J = Imax to I step-1 
P(J+1) = P(J) 
C(J+1) = C(J) . 

Next J 
We then insert P at location I, and set its counter to 1: 

P(I) = P 
C(I) = 1 . 

We then quit the comparison. 

(c) if P does not match any value on the list, we ignore 
it . 

4.  After the roving particle has moved over its entire 

domain, we print the results: 

For I = 0 to Imax 
Print  I, P(I),C(I) 

Next I 
Of course, we can read this as 

P, Z(2)p . 
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150 REM N=2 
160 REM 
170 OPTION BASE 1 
172 CLEAR 
174 POKE 18,0:POKE 19,0: POKE 20,0: 
180 DIM B(3,3) 
200 REM DEFINITION OF BASIC VECTORS 
210 REM B(I,X) is Xth component of Bi 
220 B(l.l)=l : B(l,2)=0 : B(l,3)=0 
230 B(2,l)=0 : B(2,2)=l : B(2,3)=0 
240 B(3,l)=0 : B(3,2)=0 : B(3,3)=l 
250 MAX=2:M2=MAX*MAX 
260 DIM R(3),C(M2) 
300 FOR I=-MAX TO MAX 
310 FOR J=-MAX TO MAX 
320 FOR"K=-MAX TO MAX 
330 FOR L=l TO 3 
340 R(L)=I*B(1,L)+J*B(2, L)+K*B(3,L) 
350 NEXT L 
360 D=R(1)*R(1)+R(2)*R(2)+R(3)*R(3) 
370 IF (D=0) OR  (D>M2) THEN 400 
380 C(D)=C(D)+1 
400 NEXT K 
410 NEXT J 
412 PRINT "I=";I 
420 NEXT I 
490 OPEN #1,"P:" OUTPUT 
500 PRINT #1,'"D  'T'ZCD^ " 
510 FOR D=l TO M2 
520 PRINT *»1,D;"  '^CCD I 
522 PRINT D;"  "iCCD) 
530 NEXT D 
600 CLOSE #1 

FIGURE 27. Program Isingl for Calculating Coordination 
Numbers 
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APPENDIX  C 

ISING2   PROGRAM 

Regarding the  program   ISING2.BAS   for  computing 

Z(3)pqr     triangle  coordination  number.      Put   one  particle 

a   at  the  origin  of   the   lattice.      Put  another (3   at 

a   location  specified by   IM  and  a  third r   at  a 

location  specified by   IN.     Then 

ra->    =   0-> 

r(3 - >    =  21 Ni Bl - > 

rr->    = Ei Nl Bl -> 

The  distances  between the  particles   are 

Da(a   =   i |r3!->   -  rfJ-> I 1   =   ! lr^-> II' 

= >f{Sj[SlMl (Bl-> )j]2} 

Doer   =   l!ro(->   -  rr-> I I   =   !|rr->|| 

= ^{Sj [IiNi (Bi-> )o ]2} 

Dfir   =   1 |rt3->   -  rr-> 1 I 

= J{Sj[Zi(Ml    -  Ni )(Bl--> )j ]2} 

For   "n-cube"   lattices  these  are: 

D»(?   = ^ (2 j Mj 2 ) 

Dxr   = ^r(SjNj2) 

Df5o(   = ^f [Sj (Mj    -   Nj )2] 

2.      Step 1^   and r   throughout  the   entire   region 

surronding 'ix .      Arrange  Dxi? ,   Dxr , and  Di^r 
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into   ascending order: 

{-Dad ,I>xr ,mr )   —>   (P,Q,R) 

i.e. ascending order where P < = Q < = R. 

At each pair of locations, compute Dfxd! , Do<r,D^Jr. 

Go iinmediatel7 to the next location if 

(a) any of these are 0 (at least one particle has 

accidentI7 been placed on top of another). 

(b) any of these exceed Dmax (at least one particle 

has gotten too far away). 

3.  There are  only certain possible distances between 

lattice points.  We know what these are from the "Z2p" 

work.  Call these possible distances, A,B,C,..., and 

arrange them in ascending order.  Then the combinatorially 

possible 3-tuples are 

AAA 
AAB ABB 
AAC ABC ACC 
AAD ABD ACD 
AAE ABE ACE 

BBC BCC 
BED BCD BDD 
BBE BCE BDE 

CCC 
CCD CDD 
CCE CDE CEE 

Of course, not all of these combinatorially possible 
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p-tuples is a possible triangle on a given lattice; for 

example, in 1-dimension, DafJ + lYir -   l>y.V .      In practice we 

are only interested in "small" triangles.  So in practice, 

we will cut off each sequence when the corresponding 

triangle is "too big".  We can now assign each remaining 

3-tuple a counting number I, and a counter C(I).  We 

increment this counter whenever P,Q,R passes the appropriate 

entrance requirement. 

For n-cube lattices, the possible distances are m, 

m=l,2,3,... .  (Not all values of m occur for smaller n-cube 

lattices.) 

So: 

FOR J = 0 TO 4 
D(J) = SQR(J) 

NEXT J 
loads a more-than-adequate set into D(.)-  We might prefer 

to do this "by hand" for each explicit lattice, to ensure 

that only distances possible for that lattice occur. 

Anyway, D(.) is to contain the possible distances. 

Here is a possible scheme, for n-cubic lattices, that cuts 

off. 
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TABLE 1 

TRIANGLE COORDINATION NUMBER j. • 
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100 
110 
130 
140 
150 
160 
170 
172 
174 
176 
178 
195 
200 
210 
212 
214 
220 
230 
240 
250 
260 
270 
280 
300 
302 
304 
306 
308 
310 
312 
314 
320 
322 
324 
326 
328 
330 
332 
334 
338 
340 
342 
344 

REM THIS PROGRAM COMPUTES 
REM N-COORDINATION NUMBERS (FCC) 
REM  4 DEC 1985 (copied from ISING3.msb 16 feb 1985) 
REM 
REM N=3 
REM 
OPTION BASE 1 
CLEAR 
TIME=0 
F$="scrn:" 
OPEN F$ FOR OUTPUT AS ttl 
DEFINT A-Z 
REM DEFINITION OF BASIS VECTORS 

B(I,X) is the Xth component of Bi 
B(3,3) 
FACE CENTERED CUBIC 

REM 
DIM 
REM 
B(l 1)=1 : B(l,2)=l : B(l,3)=0 
B(2,l)=0 : B(2,2)=l : B(2,3)=l 
B(3,l)=l : B(3,2)=0 : B(3,3)=l 
MAX=2 ■ 
M2=MAX*MAX 
DIM C(M2,M2) 
DIM Rl (3),R2(3) 
FOR I1=-MAX TO MAX 
FOR Jl = -t4AX TO MAX 
FOR K1 = -MAX TO MAX 
FOR L=l TO 3 • 
Rl (L)=I1*B(1,L)+J1*B(2,L)+K1*B(3,L) 
NEXT L 
D1=R1(1)*R1(1)+R1(2)*R1(2)+R1(3)*R1(3) 
IF (D1=0) OR (D1>M2) THEN 450 
FOR I2=-MAX TO MAX 
FOR J2=-MAX TO MAX 
FOR K2=-MAX TO MAX 
FOR L=l TO 3 
R2(L) = I2*B(1,L)+J2*B(2,L)+K2*B(3 , L) 
NEXT L 
D2=R2(1)*R2(1)+R2(2)*R2(2)+R2(3)*R2(3) 
IF (D2=0) OR (D2>M2) THEN 400 
D3=0 
FOR L=l TO 3 
R3=R1(L)-R2(L):D3=D3+R3*R3 
NEXT L 

FIGURE 28. Program Ising2 for Calculating Coordination 
Numbers 
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346 IF (D3=0) OR (D3>M2) THEN 400 
348 GOSUB 6000 
400 NEXT K2 
402 NEXT J2 
404 NEXT 12 
450 NEXT Kl 
460 NEXT Jl 
470 NEXT II 
500 PRINT ltl,"Dl,  D2,   Z(D1,D2)" 
510 FOR Dl=l TO M2 
512 FOR L2=l TO M2 
522 PRINT «1,D1;"  "; D2; "  '•;C(D1,D2) 
524 PRINT Dl;"  •■;D2;"  ";C(D1,D2) 
530 NEXT D2,D1 
534 PRINT #1, "This calculation took   ";TIMES;" 
536 PRINT «1:PRINT TIMES 
600 CLOSE «1 
5000 P=D1 
5010 IF D1>D2 THEN T=D1:D1=D2:D2=T 
5020 IF D2>D3 THEN T=D2:D2=D3:D3=T 
5030 IF D1>D2 THEN T=D1:D1=D2:D2=T 
5040 C(D1,D2,D3)=C(D1,D2,D3)+1 
5050 D1=P 
5060 RETURN 
6000 D(1)=D1:D(2)=D2:D(3)=D3:P1=D1 
6010 M=3 
6020 FOR G=M-1 TO 1 STEP -1 
6030 FOR F=l TO G 
6040 IF D(F)>D(F+1) THEN SWAP D(F),D(F+1) 
6050 NEXT F 
6060 NEXT G 
6070 D1=D(1):D2=D(2):D3=D(3) 
6080 C(D1,D2)=C(D1,D2)+1 
6085 D1=P1 
6090 RETURN 

FIGURE.28 continued 
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APPENDIX D 

CLUSTERS OF 4-PARTICLES 

This appendix describes the calculation of the 

coordination number for a cluster of four particles.  Two 

pieces of information are obtained from the calculation: 

(1) the shape of the most compact figure for 4-partiGles and 

(2) the number of these most compact figures which is called 

the cordination number. The particles are fixed in position 

at the lattice sites of the crystal (see Fig. 1, Ch. I) 

Fig. 29 is a diagram of the method used in ISING4F 

to calculate the distances between the particles.  Use one 

of the particles as the origin and draw a vector to each of 

the other three particles which are called the "rovers" and 

labeled 1,2,3.  Calculate the distances corresponding to 

these 3 vectors and the distances between each of the 3 

"rovers".  The vectors and the associated distances are 

labeled as shown in Fig. 29. 

The calculation of the six distances are calculated 

and stored by ISING4F for each particle that is choosen as 

an origin.  The distances are sorted and the number of 

similar figures are counted.  The results for the 4-Gluster 

case are given in Fig. 30 and show that the most compact 

figure is an equilateral pyramid with six sides equal and 
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that there are 48 of them.  The fact that all six sides are 

equal length is an important distinction.  This has been 

true for the calculations in this study.  It will not be 

true for higher order clusters e.g. 5-cluster and 6-cluster 

configurations.  This means that the entropy calculation 

will be done in a different way than described in this work. 

Fig. 31 is a listing of the steps in the program 

ISING4F to carry out this calculation for an FCC latice. 

Other lattices are possible by changing the values in lines 

160 to 180 to represent other lattice sites. 
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4-CLUSTER     -.    ^-v    x-^ 
3 "ROVERS" ©, ©, (3) 

ORIGIN 

51 D1 

% D2 
A§ D3 
—^ 
R12 D12 ^ 
R13 D13 ^^ 
R23 D23 

Fig. 29. DIAGRAM OF A 4-PARTICLE CLUSTER SHOWING THE 
ORIGIN AND 3 "ROVERS". THE VECTORS R1 THRU RIS AND 
CORRESPONDING DISTANCES D1 THRU D23 ARE USED IN THE 
PROGRAM ISING 4F TO CALCULATE THE NUMBER OF THE MOST 
COMPACT FIGURES FOR AN FCC LATTICE. 
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10 REM THIS PROGRAM COMPUTES 
20 REM N-COORDINATION NUMBERS (FCC) 
40 REM  4 DEC 1985 (converted from ISING3.msb 16 feb 1985) 
50 REM  see pg. 18/VIII and 
60 REM N=4 
70 REM 
80 OPTION BASE 1 
90 CLEAR 
100 TIME=0 
102 F$="lptl:" 
104 OPEN F$ FOR OUTPUT AS Itl 
110 DEFINT A-Z 
120 REM DEFINITION OF BASIS VECTORS 
130 REM B(I,X) is the Xth component of Bi 
140 DIM B(3,3) 
150 REM FACE CENTERED CUBIC 
160 B(l,l)=l : B(l,2)=l : B(l,3)=0 
170 B(2,l)=0 : B(2,2)=l : B(2,3)=l 
180 B(3,l)=l : B(3,2)=0 : B(3,3)=l 
190 MAX=2 
200 M2=MAX*MAX 
210 DIM C(M2,M2,M2,M2,M2,M2) 
220 DIM R1(3),R2(3),R3(3) 
230 FOR I1=-MAX TO MAX 
240 FOR J1=-MAX TO MAX 
250 FOR K1=-MAX TO MAX 
270 FOR L=l TO 3 
280 Rl (L)=I1*B(1,L)+J1*B(2,L)+K1*B(3,L) 
290 NEXT L 
300 D1=R1(1)*R1(1)+R1(2)*R1(2)+R1(3)*R1(3) 
310 IF (D1=0) OR (D1>M2) THEN 710 
320 FOR I2=-MAX TO MAX 
330 FOR J2=-MAX TO MAX 
340 FOR K2=-MAX TO MAX 
350 FOR L=l TO 3 
360 R2(L)=I2*B(1,L)+J2*B(2,L)+K2*B(3,L) 
370 NEXT L 
380 D2=R2 (1) *R2 (1) +R2 ( 2 ) *R2 ( 2) +R2 ( 3 ) *R2 ( 3 ) 
390 IF (D2=0) OR (D2>M2) THEN 700 
400 FOR I3=-MAX TO MAX 
410 FOR J3=-MAX TO MAX 
420 FOR K3 = -MAX TO MAX 
430 FOR L=l TO 3 
440 R3(L)=I3*B(1,L)+J3*B(2,L)+K3*B(3,L) 

FIGURE 31. Program Ising4f for Calculating 
Coordination Number for a 4-cluster 

139 



450 NEXT L 
460 D3=R3(1)*R3(1)+R3(2)*R3(2)+R3(3)*R3(3) 
470 IF (D3=0) OR (D3>M2) THEN 690 
480 D12=0 
490 FOR L=l TO 3 
500 R12=R1(L)-R2(L):D12=D12+R12*R12 
510 NEXT L 
520 IF (D12=0) OR (D12>M2) THEN 690 
530 D13=0 
540 FOR L=l TO 3 
550 R13=R1(L)-R3(L):D13=D13+R13*R13 
560 NEXT L 
570 IF (D13=0) OR (D13>M2) THEN 690 
580 D23=0 
590 FOR L=l TO 3 
600 R23=R2(L)-R3(L):D23=D23+R23*R23 
610 NEXT L 
620 IF (D23=0) OR (D23>M2) THEN 690 
630 REM BUBBLE SORT 
635 GOSUB 6000 
690 NEXT K3,J3,I3 
700 NEXT K2,J2,I2   • 
710 NEXT Kl.Jl.Il 
720 PRINT #1,"Dl, B2: D3.. D12,  D13,  D23 

Z(D1,D2,D3,D12,D13,D23)" 
730 FOR Dl=l TO M2 
740 FOR D2=l TO M2 
750 FOR D3=l TO M2 
752 FOR D12=l TO M2 
754 FOR D13=l TO M2 
756 FOR D23=l TO M2 
760 PRINT 4*1,Dl;"  ' D2: 

765 PRINT Dl;" ;D2: 
r\o T 

D3;" 

;D3 „ '. 

D23 II                   II     , 

";D12;"  ";D13;"  "; 
C(D1,D2,D3,D12,D13,D23) 
D12;"  ";D13;"  "; 
C(D1,D2,D3,D12,D13,D23) 

770 NEXT D23,D13,D12,D3,D2,D1 
780 CLOSE 4*1 
6000 D(1)=D1:D(2)=D2:D(3)=D3:D(4)=D12:D(5)=D13: 

D(6)=D23:P1=D1 
6010 M=6 .     . , 
6020 FOR G=M-1 TO 1 STEP -1 
6030 FOR F=l TO G 
6040 IF D(F)>D(F+1) THEN SWAP D(F),D(F+1) 
6050 NEXT F 
6060 NEXT G 
6070 D1=D(1):D2=D(2):D3=D(3):D12=D(4):D13=D(5):D23=D(6) 
6080 C(D1,D2,D3,D12,D13,D23)=C(D1,D2,D3,D12,D13,D23)+1 
6085 D1=P1 
6090 RETURN 

FIGURE 31. continued 
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APPENDIX E 

PROGRAM LISTINGS 

There are three programs listed in this appendix. 

Fig. 32 is a listing of SIM4 used to obtain the equilibrium 

(minimum) free energy for the fourth approximation which is 

the sum of the first, second, third and fourth term of the 

Merita expansion.  The minimization program for lower order 

approximations can be obtained by deleting the equations for 

the higher order clusters.  The Simplex minimization that is 

used here is described in reference 6. 

Fig. 33 is a listing of HIDDEN6 that is used for 

making the contour plots shown in the text.  This program is 

described in reference [24-26]. 

The program GRID6 listed in Fig. 34 was used to 

calculate the entropy values in the third and fourth 

approximations that were plotted as a function of x,y. . 
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10 REM **PROGRAM NAME IS 'SIM4.BAS', BECAUSE IT DOES A 
'SIMPLEX' MINIMIZATION 

20 REM **0N THE 4-CLUSTER ISING MODEL 
30 REM **COPIED FROM 'SIM9.BAS' RUNNING ON HEN'S PDP-11 
40 REM **21-MAR-1985 
50 RANDOMIZE 
60 Z1=12:Z111=48:Z111111=48 
70 TR=2 
80 BR=0 
90 GOTO 330 
99 REM **PUT THE FUNCTION TO-BE-MINIMIZED HERE... 
100 ON ERROR GOTO 299 
110 X=A(0) 
120 Y=A(1) 
122 Z=A(2) 
124 W=A(3) 
130 Pl=(l+X)/2 : P2=(l-X)/2 
140 R1=P1*L0G(P1)+P2*L0G(P2) 
150 P21=(l+2*X+Y)/4:P22=(l-Y)/4:P23=(l-2*X+Y)/4 
160 R2=P21*LOG(P21)+2*P22*LOG(P22)+P23*LOG(P23) 
162 P31=(l+3*X+3*Y+Z)/8:P34=(l-3*X+3*Y-Z)/8 
163 P32=(1+X-Y-Z)/8:P33=(1-X-Y+Z)/8 
164 R3=P31*LOG(P31)+P34*LOG(P34)+3*P32*LOG(P32) 

+3*P33*LOG(P33) 
170 P41=(1+4*X+6*Y+4*Z+W)/16:P43=(1+2*X-2*Z-W)/16 
172 P42=(1-4*X+6*Y-4*Z+W)/16:P44=(1-2*X+2*Z-W)/16 
174 P45=(1-2*Y+W)/16 
176 R4=P41*LOG(P41)+P42*LOG(P42)+4*(P43*LOG(P43) 

+P44*L0G(P44))+6*P45*LOG(P45) 
180 R=R1+(Z1/2)*(R2-2*R1)+(Z111/6)*(R3-3*R2+3*R1) 
182 R=R+(Zllllll/24)*(R4-4*R3+6*R2-4*R1) 
190 F=-BR*X-(Z1/2)*Y+TR*R 
298 ON ERROR GOTO 0:RETURN 
299 F=lE+35:RESUME 298 
330 N=4 
340 11=0 
350 DIM X(5,5),M(5),V(5),R(5),E(5),C(5),A(5) 
360 FOR 1=0 TO N-1 
370 READ M(I),V(I) 
380 NEXT I 
390 FOR J=0 TO N 
400 FOR 1=0 TO N-1 
410 X(I,J)=M(I)+RND*V(I) 
420 NEXT I 
430 NEXT J 
440 F7=lE+37 : F9=-F7 
450 V7=-l : V9=-l 
460 FOR J=0 TO N 

FIGURE 32. Program SIM4 
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470 FOR 1=0 TO N-1 
480 A(I)=X(I,J) 
490 NEXT I 
500 GOSUB 100:X(N,J)=F 
510 IF F<F7 THEN F7=F : V7=J 
520 IF F>F9 THEN F9=F : V9=J 
530 NEXT J 
540 IF V7--1 THEN PRINT"F-MIN NOT FOUND" :STOP 
550 IF V9=-l THEN PRINT"F-MAX NOT FOUND" :STOP 
560 IF V7=V9 THEN PRINT"F-MIN = F-MAX! i !":STOP 
570 PRINT"ITTERATION #";II:11=11+1 
580 FOR J=0 TO N 
590 PRINT J;" "; 
600 FOR 1=0 TO N 
610 PRINT X(I,J);'" "; 
620 NEXT I 
630 PRINT 
640 NEXT J 
650 PRINT 
660 FOR 1=0 TO N-1 
670 S=0 
680 FOR J=0 TO N 
690 IF JOV9 THEN S=S+X(I,J) 
700 NEXT J 
710 M(I)=S/N 
720 V(I)=X(I,V9)-M(I) 
730 R(I)=M(I)-V(I) 
740 A(I)=R(I) 
750 NEXT I 
760 GOSUB 100 :F1=F 
770 IF F1<=F7 THEN 910 
780 IF F1<=F9 THEN 1020 
790 FOR 1=0 TO N-1 
800 C(I)=M(I)+V(I)/2 : A(I)=C(I) 
810 NEXT I 
820 GOSUB 100 : F2=F 
830 IF F2<=F9 THEN 1070 
840 FOR 1=0 TO N-1 
850 FOR J=0 TO N 
860 IF JOV7 THEN X( I, J) = (X( I, J)+X( I, V7 ) )/2 
870 NEXT J 
880 NEXT I 
890 PRINT"CONTRACT ENTIRE SIMPLEX" 
900 GOTO 1120 
910 FOR 1=0 TO N-1 
920 E(I)=M(I)-2*V(I):A(I)=E(I) 
930 NEXT I 
940 GOSUB 100:F3=F 
950 IF F3<=F7 THEN 970 
960 GOTO 1020 

FIGURE 32 continued 
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970 FOR 1=0 TO N-1 
980 X(I,V9)=E(I) 
990 NEXT I 
1000 PRINT"ACCEPT EXPANDED VERTEX" 
1010 GOTO 1120 
1020 FOR 1=0 TO N-1 
1030 X(I,V9)=R(I) 
1040 NEXT I 
1050 PRINT"ACCEPT REFLECTED VERTEX" 
1060 GOTO 1120 
1070 FOR 1=0 TO N-1 
1080 X(I,V9)=C(I) 
1090 NEXT I 
1100 PRINT"ACCEPT CONTRACTED VERTEX" 
1110 GOTO 1120 
1120 GOTO 440 
1130 DATA .0,.3 
1140 DATA .0,.3 
1150 DATA .0,.3 
1160 DATA .0,-3 

FIGURE 32 continued 
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1 
2 
3 
4 
5 
6 
7 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
272 
278 
280 
283 
284 
285 
286 
288 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 

'From NIBBLE/Vol 4/No. 8/pp 
'Xfered to Jack's COMPAQ on 

CMAX=639:RMAX=199 
Zl = 12 
TR=10 
BR=0 
DIM H(CMAX),L(CMAX) 

61-71 
3-27-86 by HL 

MM=1E+10:UH=-MM:UL=MM:VH=-MM:VL=MM 
FOR 1=0 TO CMAX:L(I)=RMAX:NEXT 
XE=2/2.5:YE=l/2.5:ZE=l/2.5 
S1=XE*XE+YE*YE:S2=SQR(SI):S3=SQR(S1+ZE*ZE):S4=l/(S2*S3) 
M=20:N=20 
DIM X(M),Y(N),R(M,N,1) 
XL=-1:XH=1:YL=-1:YH=1 
DX=(XH-XL)/M:DY=(YH-YL)/N 
X0=XH:IF XE<0 THEN DX=-DX:XO=XL 
YO=YH:IF YE<0 THEN DY=-DY:YO=YL 
CX=(CMAX+1)/2:CY=(RMAX+1)/2 
FOR 1=0 TO M 
FOR J=0 TO N 
FOR 1=0 TO M 
X=X(I):Y=Y(J) 

' Replacable 
' Z=F(X,Y) 

:X(I)=XO-I*DX 
:Y(J)=YO-J*DY 
:FOR J=0 TO N 

function 

NEXT 
NEXT 

Pl=(l+X)/2:P2=(l-X)/2 
IF P1<=0 OR P2<=0 THEN PHI=0:GOTO 300 
SS1=P1*L0G(P1)+P2*LOG(P2) 
P21=(1+2*X+Y)/4:P22=(1-Y)/4:P23=(1-2*X+Y)/4 
IF P21<=0 OR P22<=0 OR P23<=0 THEN PHI=0:GOTO 
SS2=P21*LOG(P21)+2*P22*LOG(P22)+P23*LOG(P23) 
PHI=-BR*X-(Z1/2)*Y+TR*(SS1+(Z1/2)*(SS2-2*SS1)) 
IF PHI>2 THEN PHI=2 
Z=PHI/20+.5 
GOSUB 890 
R(I,J,0)=U:R(I,J,1)=V:GOSUB 1420 
NEXT J:PRINT "1=";I,"MAXr";M:NEXT I 
'S is the scale factor 
S=MM:IF UL=0 THEN 380 
S0=CMAX/(2.1*ABS(UL)):IF SO<S THEN S=SO 
IF UH=0 THEN 400 
S0=CMAX/(2.1*ABS(UH)):IF SO<S THEN S=SO 
IF VL=0 THEN 420 
S0=RMAX/(2.1*ABS(VL)):IF SO<S THEN S=S0 
IF VH=0 THEN 450 
S0=RMAX/(2.1*ABS(VH)):IF SO<S THEN S=S0 
'Locate in HGR2 coordinates 
FOR 1=0 TO M:FOR J=0 TO N 

FIGURE 33. PROGRAM HIDDEN6 

300 
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460 R(I,J,0)=INT(S*R(I,J,0)+CX):R(I,J,1)=INT(S*R(I,J,1)+CY) 
470 NEXT J:NEXT I 
480 'Start graphics 
490 KEY OFF:SCREEN 2 
492 CLS 
500 IF ABS(XE)<ABS(YE) THEN 670 
510 FOR 1=0 TO M 
520 'Draw fixed X-lines 
530 FOR J=l TO N 
540 U1=R(I,J-1,0):V1=R(I,J-1,1):U2=R(I,J,0):V2=R(I,J,1) 
550 GOSUB 950:'Test visibility, and plot... 
560 GOSUB 1220:'Update H,L arraws 
570 NEXT J 
580 IF I=M THEN 650 
590 'Draw fixed Y-line segments 
600 FOR J=0 TO N 
610 U1=R(I,J,0):V1=R(I,J,1):U2=R(I+1,J,0):V2=R(I+1,J,1) 
620 GOSUB 950:'Test visibility, and plot... 
630 GOSUB 1220:'Update H,L arrays 
640 NEXT J 
650 NEXT I 
660 GOTO 820 
670 FOR J=0 TO N 
680 'Draw fixed Y-lines 
690 FOR 1=1 TO M 
700 U1=R(I-1,J,0):V1=R(I-1,J,1):U2=R(I,J,0):V2=R(I,J,1) 
710 GOSUB 950 
720 GOSUB 1220 
730 NEXT I 
740 IF J=N THEN 810 
750 'Draw fixed X-line segments 
760 FOR 1=0 TO M "        ' • 
770 U1=R(I,J,0):V1=R(I,J,1):U2=R(I,J+1,0):V2=R(I,J+1,1) 
780 GOSUB 950 
790 GOSUB 1220 
800 NEXT I 
810 NEXT J 
820 PRINT CHR$(7):'Here is a chance to get printed output. 
830 ' 
840 ' 
850 END 
860 ' 
870 'Transformation subroutine 
880 ' 
890 U=(XE*Y-YE*X)/S2 
900 V=(ZE*(X*XE+Y*YE)-S1*Z)*S4 
910 RETURN 
920 ' 
930 'Wright's algorithm!!! 
940 ' 
950 T1=0:T2=0:G1=0:G2=0 

FIGURE 33. continued 
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1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 

1380 
1390 
1400 
1410 
1420 
1430 
1440 
1450 
1460 

LINE(U1,V1) 
LINE(U1,V1) 
RETURN 

(U2,V2):RETURN 
(U2,V2):RETURN 

960 IF V1>=H(U1) THEN Tl=l 
970 IF V2>=H(U2) THEN T2=l 
980 IF V1<=L(U1) THEN Gl=l 
990 IF V2<=L(U2) THEN G2=l 
1000 IF Tl=l AND T2=l THEN 

IF Gl=l AND G2=l THEN 
IF T1+T2+G1+G2=0 THEN 
GOSUB 1370 
IF KM=KX THEN 1160 
F1=0:F2=0 
FOR K=KM TO KX 
VK=VM+(VX-VM)*(K-KM)/(KX-KM) 
IF VK>H(K) OR VK<L(K) THEN U1=K:Vl^VK:Fl=l:K=KX 
NEXT 
FOR K=KX TO KM STEP -1 
VK=VM+(VX-VM)*(K-KM)/(KX-KM) 
IF VK>H(K) OR VK<L(K) THEN U2=K:V2=VK:F2=l:K=KM 
NEXT 

F2=l THEN LINE(U1,V1)-(U2,V2) IF Fl=l AND 
RETURN 
IF VX>H(U1) 
IF VM<L(U1) 
RETURN 

THEN LINE(U1,H(U1))-(U1,VX) 
THEN LINE(U1,L(U1))-(U1,VM) 

RETURN 

'Update H,L arrays 

V1>H(U1) 
V2>H(U2) 
V1<L(U1) 
V2<L(U2) 

THEN 
THEN 
THEN 
THEN 

H(U1)=V1 
H(U2)=V2 
L(U1)=V1 
L(U2)=V2 
THEN RETURN 

IF 
IF 
IF 
IF 
IF ABS(U1-U2)<1 
GOSUB 1370 
FOR K=KM+1 TO KX-1 
VK=VM+(VX-VM)*(K-KM)/(KX-KM) 
IF VK>H(K) THEN H(K)=VK 
IF VK<L(K) THEN L(K)=VK 
NEXT K 
RETURN 

' Find lef i:-most point, of t-he line 

KM=U1:KX=U2:VM=V1:VX=V2:IF KM>KX THEN KM=U2:KX=U1: 
VM=V2:VX=V1:RETURN 
RETURN 
f 

'Find extreme values in U,V coordinates before scaling 

IF 
IF 
IF 
IF 

U>UH 
U<UL 
V>VH 
V<VL 

THEN 
THEN 
THEN 
THEN 

UH=U 
UL=U 
VH=V 
VL=V 

RETURN 

FIGURE 33 continued 

147 



10 Zl=12 
20 Zlll=48 
30 Zllllll=48 
100 OPEN "Iptl:" FOR OUTPUT AS #1 
102 LG2=LOG(2) 
105 FOR W=.8 TO 0 STEP -.2 
106 FOR Z=.8 TO 0 STEP -.2 
108 PRINT #l,"Z=";Z;"w=";W; 
110 PRINT «1," Y-AXIS" 
112 PRINT #1, '•     ■■; 
120 FOR Y=-10 TO 10 
122 PRINT #1, USING "#*t#";Y; 
124 NEXT Y 
126 PRINT tfl, 
200 FOR X=l TO -1 STEP -.1 
202 PRINT #1, USING "tt. *t"; X; : PRINT #1,"   "; 
210 FOR Y=-l TO 1.05 STEP .1 
220 ON ERROR GOTO 800 
300 Pl=(l+X)/2 
310 P2=(l-X)/2 
320 R1=P1*L0G(P1)+P2*L0G(P2) 
330 P21=(l+2*X+Y)/4 
340 P22=(l-Y)/4 
350 P23=(l-2*X+Y)/4 
360 R2=P21*LOG(P21)+2*P22*LOG(P22)+P23*LOG(P23) 
400 P31=(l+3*X+3*Y+Z)/8 
410 P32=(l+X-Y-Z)/8 
420 P33=:(l-X-Y+Z)/8 
430 P34=(l-3*X+3*Y-Z)/8 
440 R3=P31*LOG(P31)+3*P32*LOG(P32)+3*P33*LOG(P33) 

+P34*LOG(P34) 
445 P41=(1+4*X+6*Y+4*Z+W)/16:P43=(1+2*X-2*Z-W)/16 
450 P42=(1-4*X+6*Y-4*Z+W)/16:P44=(1-2*X+2*Z-W)/16 
453 P45=(1-2*Y+W)/16 
455 R44=P41*LOG(P41)+P42*LOG(P42)+4*(P43*LOG(P43) 

+P44*L0G(P44))+6*P45*LOG(P45) 
460 R4=R1+(Z1/2)*(R2-2*R1)+(Z111/6)*(R3-3*R2+3*R1) 
465 R4=R4+(Zl11111/24)*(R44-4*R3+6*R2-4*R1) 
470 R4=-R4/(LG2) 
600 R=INT(100*R4+.5) 
610 PRINT #1,USING '•»»«■';R; 
700 NEXT Y 
710 PRINT «1, 
720 NEXT X 
730 NEXT Z 
740 NEXT W 
799 END 
800 PRINT «1," **"; 
810 RESUME 700 

FIGURE 34. PROGRAM GRID6 
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APPENDIX F 

UNITS and NOTATION 

The following "reduced" units are used in the text. 

§ = "reduced" free energy F = (F/NJ) 

Br = "reduced" magnetic field B -   (PoB/J) 

Tr = "reduced" temperature T = (ksT/J) 

J = the value of the exchange integral = (ksTc/Z). 

For a Curie temperature = Tc = 1056 oK (Fe) and Z = 12 for an 

FCC lattice:    J = 7.56 (10-3)e.v. 

.     S(Joules/oK) 
Entropy:  =   S   in   "bits" 

In  2 

In the equations two notations have been used to 

represent the same quantites. 

either x 

or x< 1 > 

either yi j 

or x< 2 > i j 

either zi j k 

or x< 3 > i jk 

<P> = 

<PP> = 

<PPP> = 
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APPENDIX G 

TABLE 2 

EQUILIBRIUM FREE ENERGY 2 

Br = _g 
■• 

Tr Appro: icimation 

First Second t   Third (5^) Fourth 

2 -6.000012 -6.xxxxxx -5.991287 -5.734586 
4 -6.010053 -6.010166 -6.043771 - -6.009864 
6 -6.118027 -6.122647 -6.118978 -6.123150 
8 -6.466731 -6.500590 -6.503969 -6.449281 

10 -7.172468 -7.298410 -7.319456 -7.375871 
12 -8.317766 -8.567490 -8.599178 -8.653156 
14 -9.704059 -9.918160 xxxxxxxxx -9.975911 
16 -11.09035 -11.27774 -11.21078 -11.31896 
18 -12.47665 -12.64323 -12.65670 -12.67498 
20 -13.86294 -14.01289 -14.02367 -14.03782 

3 ~ -6.001010 •• _ 

5 - -6.043730 - - 
7 - -6.268225 -6.269251 - 
9 - -6.838270 -6.847406 - 
9.5 - -7.052020 - - 

10.25 - -7.434480 - - 
10.5 - -7.579450 - - 
10.75 - -7.733550 - - 
10.85 - -7.797817 - - 
10.9 - -7.805160 - - 
10.95 - -7.863579 - - 
11 - -7.896960 -7.935181 - 
13 - -9.241450 -9.268160 - 
15 - -10.59706 -10.61683 - 
17 - -11.95988 -11.97504 - 
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TABLE 3.   . 

SOME CORRELATION COEFFICIENTS 

Br = 0 

Cluster Correlation Coefficients 

w 

Tr = 4 

1-c 
2-c 
3-c(^) 
4-c 

9948288 
9947500 
9651874 
,9945275 

,9895800 
9330112 
.9891984 

.9030889 

.9839292 .9787838 

Tr = 8 

1-c .8581825 - - - 

2-c .8325000 .7070200 - 

3-c{H) .8276450 .7017475 .6039199 - 

4-c .7032843 .5307391 .4117586 .3277481 

Tr = 10 

1-c .6588523 - - - 

2-c .5350000 .3400000 - - 

a-cc^) .4924544 .3144164 .2087749 - 

4-c .1001604 .2064547 .0430753 .08437848 

Tr = 16 

1-C 
2-c 
3-c(i^) 
4-c 

1.089163E-3 
-1.298148E-3 
-.1772807 
9.9860E-5 

6.244406E-2 
9.670085E-2 
8.6007E-2 

■2.161592E-2 
-1.988E-4 1.8118E-2 
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